

Connections Reform: Technical Principles

December 2025

Change Log:

Date	Change Made
12/12/25	Improved undersupply information in flow logic section
	Update to 'Scenario 10' in mapping framework and minor text updates

Contents

List of Figures and Tables	4
Introduction	5
1. Detailed Methodology Logic Flow	6
1.1 NESO Gate 2 to Whole Queue Formation	7
Introduction	7
Clarifications.....	7
Required capacity for shifts in Phase 1 and Phase 2.....	9
Utilise undersupply for rebalancing.....	11
Split offers in Phase 2	13
Temporary capacity adjustments following rebalancing and substitution (CMP434 windows only)	14
Reservations for undersupply.....	14
2. Mapping Framework.....	16
2.1 Initial queue to Readiness Declaration	17
Introduction	17
Initial queue data.....	18
Assumptions	18
Identification of scenarios.....	18
Summary of outcome of scenarios	19
Matrix of scenarios	20
Scenarios	20
Partial protections	33
Additional Installed Capacity	Error! Bookmark not defined.
Small and Medium Embedded generation	34
3. Classifications	35
3.1 Classification of Long Duration Energy Storage and low carbon dispatchable technologies under G2TWQ	36
Long Duration Energy Storage (LDES).....	36
Low carbon dispatchable power	36
4. Readiness, Protection and Planning	37
4.1 Principles used to carry out 'readiness', 'protection' and 'planning status checks'	38
Initial checks	38
Detailed checks	38
Director check.....	38
Original Red Line Boundary check.....	38
Minimum acreage.....	39

Land Rights.....	39
Development Consent Order.....	39
4.2 Protections 40	
Contract for Difference, Capacity Market and Ofgem Cap and Floor	40
Planning status	41
4.3 Policy for evidence resubmission during G2TWQ	42
Initial checks	42
Detailed checks	42
5. Substitution Summary	43
5.1 Adjacency matrix for allowable and non-allowable substitutions under G2TWQ	44
Context for substitution.....	44
Allowable substitutions.....	44
Methodology to determine non-allowable and allowable substitutions.....	44
Appendix A: List of Abbreviations	46

List of Figures and Tables

Figures

Figure 1:	Capacity shifts for rebalancing	Error! Bookmark not defined.
Figure 2:	Capacity shifts for substitutions	10
Figure 3:	Illustration of projects that are out with the permitted zonal capacity	Error! Bookmark not defined.
Figure 4:	Utilisation of undersupply during rebalancing	Error! Bookmark not defined.
Figure 5:	Overview of how significant MODAPPs determine the queue position outcome for different technology and TEC change scenarios	Error! Bookmark not defined.

Tables

Table 1:	Matrix of MODAPP scenarios and their potential impact on queue formation	20
Table 2:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 1	21
Table 3:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 2	22
Table 4:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 3	23
Table 5:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 4	24
Table 6:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 5	26
Table 7:	Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 6	27
Table 8:	Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 7	28
Table 9:	Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 8	29
Table 10:	Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 9	30
Table 11:	Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 10	31
Table 12:	Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 11	33
Table 13:	Example of initial queue data, Readiness Declaration data and resulting queue items for a project with partial protections	34
Table 14:	List of abbreviations	46

Introduction

Connections Reform is an initiative, supported by industry, to unlock Britain's clean energy future. We have been proud to lead this process together with Great Britain's networks.

On the NESO website, we have provided key information about Connections Reform and the results of queue formation. However, we recognise that some customers will want to explore specific areas in more detail.

In this document, you will find:

1. Detailed Methodology Logic Flow

- Further information about any interpretation of the Connections Reform methodologies

2. Mapping Framework

- Initial queue to Readiness Declaration

3. Classifications

- Classification of Long Duration Energy Storage and low carbon dispatchable technologies under G2TWQ

4. Readiness, Protection and Planning

- The principles used to carry out readiness, protection and planning status checks

5. Substitution Summary

- Adjacency matrix for allowable and non-allowable substitutions under G2TWQ

1. Detailed Methodology

Logic Flow

1.1 NESO Gate 2 to Whole Queue Formation

Introduction

Within the Connections Network Design Methodology (CNDM), there are several areas that required interpretation and nuanced consideration for implementation. NESO has addressed these and they are summarised below.

These nuances have been considered against three major principles:

- **Fairness:** Ensuring that decisions reflect what customers and other stakeholders might reasonably interpret as 'fair' and 'reasonable'.
- **Additional projects:** Aiming, where there is a finely balanced decision on whether resolving the nuance would include more or less capacity in the new queue, to make a decision that includes more capacity, as this can provide greater liquidity into the market.
- **Avoiding unnecessary 'fragmentation' of projects:** Avoiding unnecessary fragmentation of 'technology-stages' within projects so that, where there is a finely balanced decision on whether resolving the nuance would lead to more or less fragmentation, we make a decision that leads to less fragmentation as this mitigates unintended consequences on customer investment decisions post Gate 2 to Whole Queue (G2TWQ).

The clarifications set out in this document are in addition to those published in NESO's *Connections Methodologies Update* on 13 November 2025. This document does not cover or repeat any of the clarifications included in the 13 November 2025 update.

Clarifications

Rebalancing and substitutions

Additional detail on the steps performed for substitutions and rebalancing.

The CNDM states the following in relation to substitutions and rebalancing:

5.16.2 This will only be permitted where **all** the following criteria are met:

- a) The undersupply in Zone A and the oversupply in Zone B relate to the same technology
- b) Zone A and Zone B are geographically overlapping or adjacent zones
- c) The project(s) in Zone B are not known to have a significantly worse impact on local constraints than a project connecting in Zone A

The CNDM then illustrates a simplified example involving three zones, where substitutions between all these zones are deemed allowable. When this is extrapolated to the full *Clean Power 2030* (CP30) scenario of 11 Transmission zones and 8 Distribution zones, further information is

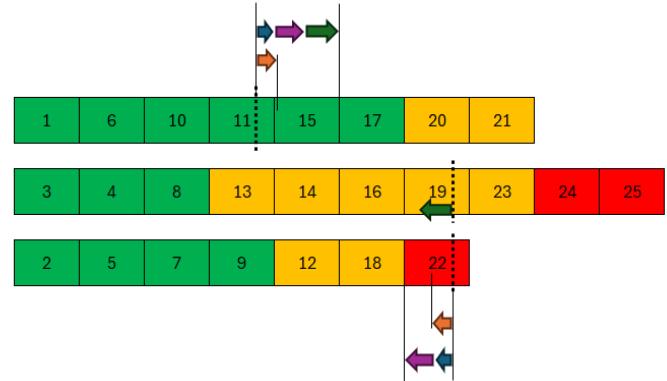
required to determine how each zone relates to all others from a system constraints cost perspective.

To achieve this, NESO has created a 'YES/NO' matrix to determine which substitutions are allowable and which are not. This matrix has been informed by a constraint-cost analysis using the CP30 scenarios as the baseline.

For each technology, and in each phase, oversupplied projects are considered one by one in their 'Great Britain-wide' queue order. For the next oversupplied project, its zone is identified in the matrix to determine all allowable substitutions that would enable capacity to move from other zones to the project's zone. Once those potential 'donor' zones have been established:

- **For rebalancing:** The zone with the highest MW volume of undersupply across those donor zones is chosen as the donor, and enough capacity from that undersupply (using only the undersupply at this stage and not taking from a selected project) is donated to accommodate the oversupplied protected project. If no donor zones have undersupply, the unprotected project with the latest (highest) queue position across those donor zones is selected, and enough capacity is donated from that project's zone to accommodate the oversupplied protected project. If there are no undersupplied zones and no unprotected projects across the donor zones, no capacity is donated. If there is not enough capacity to cover the oversupplied protected project, the permitted capacity in the zone is increased (without donation from another zone) such that the protected project can be included. It should be noted that if this capacity increase occurs during Phase 1 rebalancing, the permitted capacity for Phase 2 is reduced accordingly (see section 2.1 in this document).
- **For substitution:** The zone with the highest MW volume of undersupply is chosen as the donor and enough capacity is donated to cover the oversupplied project. If there is not enough capacity to accommodate the oversupplied project, the next zone with the highest undersupply is chosen. Projects to 'donate' supply to are selected based on the highest 'priority' projects. This process continues until all undersupply is addressed. The rules for Phase 1 and Phase 2 also apply. In Phase 1, only 0.1 MW of a project needs to be 'covered' to allow the full project in, whereas in Phase 2 the entire project must be 'covered' to allow the project into the queue. If a Phase 2 project is not fully 'covered', the project may be eligible for a 'split offer'. Further detail on capacity shifts in Phase 1 and Phase 2 is provided below, and additional information on 'split offers' is included later in this document.

Required capacity for shifts in Phase 1 and Phase 2


When carrying out *Rebalancing Zonal Capacities to Account for Protections* (CNDM 5.14) and *Zonal Substitutions to Address Undersupply* (CNDM 5.16), the amount of capacity that needs to be shifted to 'accommodate' the project being added differs between Phase 1 and Phase 2. This difference arises because exceeding permitted capacities is acceptable in Phase 1, as any increase is matched by a corresponding decrease in Phase 2 permitted capacity. In Phase 2, however, exceeding permitted capacity is not acceptable, as this would result in surpassing the target overall permitted capacities for 2035.

In Phase 1, we only need to rebalance enough capacity for the protected project being added to have been included in the initial 'aligning the queue' process under that zonal capacity allocation. In the worked example below, Project 11 is already included (due to CNDM 5.7.10), so the next protected project to add is Project 15. To add this, we need to add 25.1 MW to zone 1, as represented by the orange arrow. This comprises 25 MW to fill the gap in Project 11 and 0.1 MW to enable Project 15 to be included. (We would then move on to adding Protected Project 17 – that step is not illustrated here.)

In Phase 2, we must rebalance enough capacity to accommodate the **full** capacity of the protected project. Using the same worked example below, we first need to rebalance to add Project 11 (as this is not included in the initial allocation under CNDM 5.7.11) by moving 25 MW (blue arrow). We then move 100 MW to include Project 15 (its full capacity). This is completed in two steps: first, the remaining capacity of Project 22 is moved (purple arrow), followed by additional capacity moved from Project 19 (green arrow)¹, as it holds the next highest queue position. By the time we have added both Project 11 and Project 15, the total capacity moved is represented by the combined blue, purple and green arrows. (We would then move on to adding protected Project 17 – that step is not illustrated here.)

¹ For Phase 2, Projects 22 and 19 would not have been selected, so this step would draw capacity from oversupply. The arrow shifts shown remain correct. At the point of rebalancing, these projects are treated as selected because they are eligible for receiving split offers later in the process.

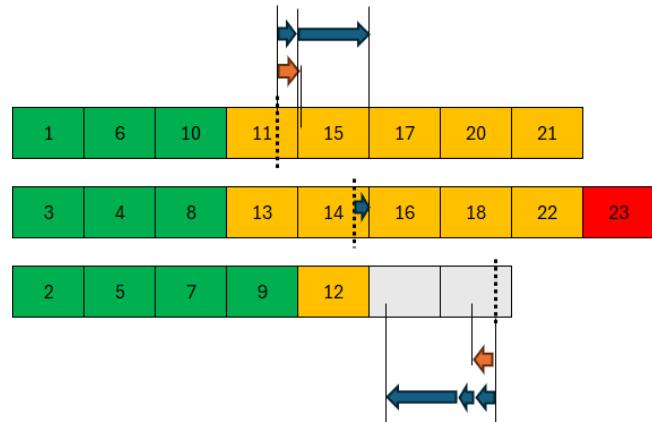
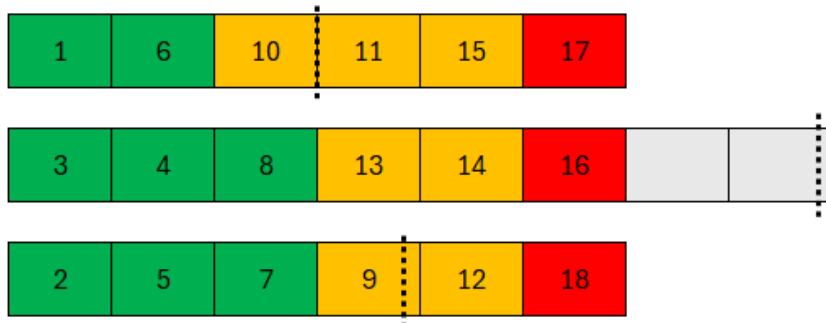

Zone	2030 Permitted Capacity	Total Capacity of 'Protected' projects
1	375 MW	600 MW
2	675 MW	300 MW
3	675 MW	400 MW

Figure 1: Capacity shifts for rebalancing. While the above example relates to *Rebalancing Zonal Capacities to Account for Protections* (CNDM 5.14), the same principle applies to *Zonal Substitutions to Address Undersupply* (CNDM 5.16). As shown in the new example below, in Phase 1 we would first make the move indicated by the orange arrow to include Project 15. In Phase 2, we begin by adding Project 11, then Project 14, and only then move to adding Project 15.

Figure 2: Capacity shifts for substitutions

Zone	2030 Permitted Capacity
1	375 MW
2	475 MW
3	675 MW



Identifying projects that are 'outwith' their zonal capacity in Phase 1 and Phase 2

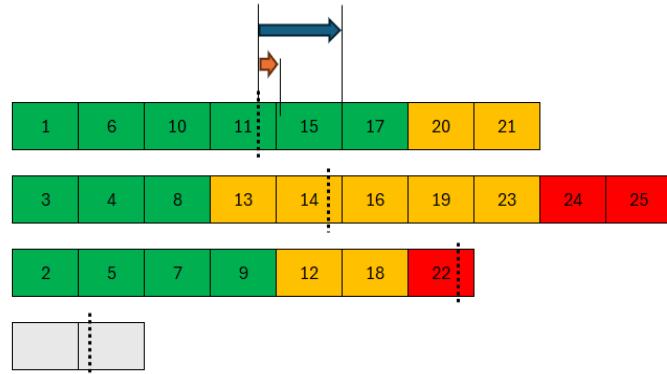
CNDM 5.16.5 states: "The projects that have the earliest queue positions and are outwith their zonal permitted capacities...". When carrying out *Zonal Substitutions to Address Undersupply* (CNDM 5.16), the term 'outwith' is interpreted differently between Phase 1 and Phase 2, in line with CNDM 5.7.10 and 5.7.11.

In the worked example below, Project 9 is partly included within the permitted capacity of its zone. As per CNDM 5.7.10, if this occurs in Phase 1 it is deemed to be included. Therefore, under Phase 1 the project with the earliest queue position that is outwith its zonal permitted capacity is Project 11.

In contrast, in Phase 2, the earliest project that is outwith its zonal permitted capacity is Project 9. This is consistent with CNDM 5.7.11.

Figure 3: Illustration of projects that are out with the permitted zonal capacity

Utilise undersupply for rebalancing


When carrying out *Rebalancing Zonal Capacities to Account for Protections (CNDM 5.14)*, capacity should first be taken from undersupplied zones.

The example in CNDM 5.14.4 is simple and states: "The projects in the provisional allocations with the latest queue positions (Projects 18 and 22) are removed to accommodate Projects 15 and 17 being added". This would not hold true if there is an adjacent zone with undersupply. In that scenario, capacity is taken from the undersupplied zone first. In the extended example shown below, this means reducing the permitted capacity of Zone 4 before Zone 3.

If there are multiple zones with undersupply to select from, the zone with the highest MW volume of undersupply is chosen as the first donor.

Figure 4: Utilisation of undersupply during rebalancing

Zone	2030 Permitted Capacity	Total Capacity of 'Protected' projects
1	375 MW	600 MW
2	475 MW	300 MW
3	675 MW	400 MW
4	120 MW	0 MW

For a Phase 1 rebalance, this means removing 25.1 MW from Zone 4 and adding it to Zone 1 to include Project 15 (orange arrow).

For a Phase 2 rebalance, this means removing 120 MW from Zone 4 and 5 MW from Zone 3 in order to include Project 15 (blue arrow).

Minimum required capacity shift

The smallest amount of capacity that can be moved between zones is 0.1 MW. This aligns with the smallest granularity that projects are required to report to.

Split offers in Phase 2

For Phase 2, after all rebalancing and substitution steps have been completed, developers of any non-protected projects left straddling the permitted capacity limit for 2035 (zonal or Great Britain) are contacted and asked whether they wish to reduce their capacity to align with the maximum permitted capacity.

A non-protected project may end up partly within a technology sub queue because some, but not all, of its capacity is available. For Phase 1, the full capacity is included (as per 5.7.10). For Phase 2, this is not the case (as per 5.7.11). In this situation, developers of any non-protected projects left straddling the permitted capacity limit for 2035 are contacted and asked whether they wish to reduce their capacity to align with the maximum permitted capacity for Phase 2. This is referred to as a 'split offer'.

Example of a split offer

A 1000 MW interconnector with a current connection date in 2034 applies for a Gate 2 offer (without advancement). It is placed as the last project in the interconnector sub-queue for Phase 2, but only 750 MW remains in the 2035 CP30 plan capacities for interconnectors. In this case, NESO would contact the interconnector developer offering 750 MW for a Gate 2 contract and 250 MW for a Gate 1 contract. The developer can accept this split offer or refuse it. If the developer refuses the split offer, the full 1000 MW project receives a Gate 1 offer and 750 MW of interconnector capacity is left undersupplied in Phase 2.

Process for split offers

For a split offer to be issued, the remaining capacity and the customer-requested connection capacity are assessed against three criteria:

- If the remaining capacity is greater than 1 MW but less than 5MW, and the customer would need to reduce their requested Transmission Entry Capacity (TEC) by more than 50% to fit within the remaining available capacity -> **no split offer is made, and the capacity is left unfilled.**
- If the remaining capacity is less than 1 MW -> **no split offer is made, and the capacity is left unfilled.**
- If the remaining capacity is greater than 5 MW and the customer can reduce their TEC by no more than 50% to fit within the available remaining capacity -> **the criteria for a split offer are met and the process for issuing a split offer begins.**

Finally, where the criteria in the third bullet above are met, **NESO may manually override the split offer so that the whole project receives a Gate 2 offer (that is, no split offer is issued).** This will only happen in the case of **Long Duration Energy Storage (LDES)**, i.e., no split offer will be issued.

Instead, the LDES project eligible for a split offer will be issued a Gate 2 offer for the full project capacity. This is because issuing a split offer for LDES would change the capacity used to determine whether a project qualifies as LDES, in line with the definition set out in Ofgem and the Department for Energy Security and Net Zero (DESNZ)'s March 2025 *Technical Decision Document for LDES*.²

Temporary capacity adjustments following rebalancing and substitution (CMP434 windows only)

As a result of rebalancing and substitution, the permitted capacity of a zone may change. It may be increased to allow more projects into that zone (substitution) or decreased to remove projects (rebalancing) or reduce undersupply (substitution). These adjustments are not permanent changes to the permitted capacity and do not endure in future windows.

For example, if the permitted capacity of Zone A is increased from 3 GW to 4 GW to account for a high volume of protected projects, this does not mean that the permitted capacity of Zone A in the next window is 4 GW. If projects in Zone A exit the queue (through self-termination, rejection of offer, or failure to meet queue management (QM) milestones), then new projects will only be allowed to join the queue in that zone once the permitted capacity falls below the original 3 GW.

Zone B, meanwhile, may have been reduced from 3 GW to 2 GW to balance this change. If projects start terminating in Zone B or Zone A, new projects can apply to connect in Zone B because this zone has still not reached its original 3 GW permitted capacity.

Reservations for undersupply

Reservation for undersupply is a sub-category of non-project-specific reservation. This will only be used as a measure of last resort. Where there is a shortfall against the 2030 permitted capacity, NESO will initially seek to resolve the undersupply through zonal substitutions. If this is unsuccessful, reservation of capacity for undersupply may be considered, but it is not mandatory.

Reservation for undersupply in Phase 1 will only be used where it could support timely connections of the technology type in the future, without material detrimental impact on projects in Phase 2. There is a risk of material detrimental impact in Phase 2 because any reservation for undersupply in Phase 1 removes capacity that would otherwise be allocated to Phase 2.

Where reservations are made for undersupply:

- These will be added to the queue such that the largest cases of undersupply receive the earliest queue positions. For example, if a zone has an undersupply of 500 MW of solar and 1 GW of onshore wind, the onshore wind reservation would receive the earlier queue position.

² [Long Duration Electricity Storage Technical Document](#), 11 March 2025, Ofgem.

- Where there is undersupply of a particular technology in a particular zone, and capacity and/or a connection point has previously been reserved for this undersupply, the project(s) added to Phase 1 to address it will take the queue position of the 'placeholder project' holding the reservation.
- The projects addressing the undersupply will be assessed according to the queue position of the placeholder project. The Transmission Owners (TOs) will have carried out studies when developing the placeholder project(s) at the identified substations within the zone of undersupply.
- The TOs may have identified several substations available and carried out studies at one substation; however, users that can address the undersupply may connect at any of the identified substations.
- Reservations for undersupply will be based on current average capacities for technologies in a given sub-queue.

Update 20/12/25:

NESO did not reserve for undersupply during the G2TWQ queue formation process.

This is because, reserving for undersupply in phase 1, would have resulted in significant 'ready' capacity (over 7GW in total) that would otherwise have received a Gate 2 phase 2 offer, instead receiving a Gate 1 offer³.

NESO therefore concluded that it would be more efficient to include more 'ready' capacity in phase 2 as this would ensure that projects that had demonstrated 'readiness' in the G2TWQ process were prioritised over 'reservations for undersupply'. NESO notes that many projects in phase 2 are seeking an earlier interim non-firm connection. As interim non-firm connection dates can often be several or more years earlier than the firm (or enduring non-firm) connection date,, this means that interim non-firm offers for phase 2 projects are more likely to deliver the volume of connected capacity needed for phase 1; rather than waiting for the next application window to seek to fill reservations for undersupply, which may not be deliverable within the 2030 timeframe.

³ This is because any capacity associated with 'reservation for undersupply' in phase 1 would be included in the overall phase 1 and built capacity, that is then subtracted from the 2035 permitted capacity in order to determine phase 2 permitted capacity.

2. Mapping Framework

2.1 Initial queue to Readiness Declaration

Introduction

The National Energy System Operator (NESO) has fundamentally restructured Great Britain's grid connection process through its *TMO4+ Connections Reform*, transitioning from a 'first come, first served' model to a gate-based regime grounded in readiness and strategic alignment. This begins with the Gate 2 to Whole Queue (G2TWQ) process. The reform aims to streamline queue positions, remove speculative or inactive projects, and ensure that only projects with demonstrable maturity and alignment with *Clean Power 2030* priorities advance in the queue.

In line with these reforms, a robust and transparent framework is required to map and reconcile two core datasets that reference the same underlying connection projects. The first dataset holds the initial queue information, including each project's original queue position and capacity in MW across both Installed Capacity per technology per stage and Transmission Entry Capacity (TEC) or Developer Capacity or Demand MW per stage. The second dataset comprises customer-entered Readiness Declaration data, detailing technology installed-capacity values, stage TEC or Developer Capacity values, technology mix, and scenario or phased information as declared by customers.

Under the Connections methodologies, customers may change certain aspects of their contracted positions via the G2TWQ process. They may remove stages or technologies, reduce TEC or request advancement to connection dates. Customers may not add stages or technologies, increase TEC or change their current connection dates.

This framework addresses the critical task of matching queue positions in the initial queue to queue items submitted in the Readiness Declaration, reconciling reported MW values across both datasets even when projects are staged, hybrid, subject to capacity reservations or have modification applications. Just as NESO applies clear Gate 2 readiness and strategic criteria to existing queue projects, this approach uses well-defined splitting and tagging logic – splitting total capacities into constituent parts by scenario or stage – to enable accurate alignment with reform definitions.

By adopting this mapping framework, the approach ensures that capacity allocations are aligned to the most current customer-submitted data, before new queue formation, while also honouring the previous queue system.

Initial queue data

For projects without a Modification Application (MODAPP), the initial queue data relating to technology and stage TEC can be gathered from a combination of the original connections contract and the Readiness Declaration, taking account of any permissible changes made in the Readiness Declaration.

For projects with a MODAPP to add TEC, the initial queue data relating to technology and stage TEC must be re-gathered in line the mapping outlined in this document.

A combination of these scenarios needs to be investigated based on the number of MODAPPs a project has been subject to.

Assumptions

- Queue item = technology-stage items entered within the Readiness Declaration.
- Queue position = a position in the initial queue based on NESO's countersignature date for an application (or the customer signature date, where one is available, if NESO's date is more than 28 days after the customer's signature date). An initial queue position is only set in certain cases, for example, the original contract and any relevant (but not all) modifications to that original contract.
- Throughout this document, TEC is sometimes mentioned solely for describing capacity, but this may also refer to Developer Capacity or Demand MW (for Transmission connected demand), as required.
- All stages described below refer to the firm or enduring non-firm stages of a project. Interim non-firm stages are not considered for queue formation under G2TWQ.
- Significant connection date delay is defined as a delay of more than six months between the connection date prior to the MODAPP and after the MODAPP.

Identification of scenarios

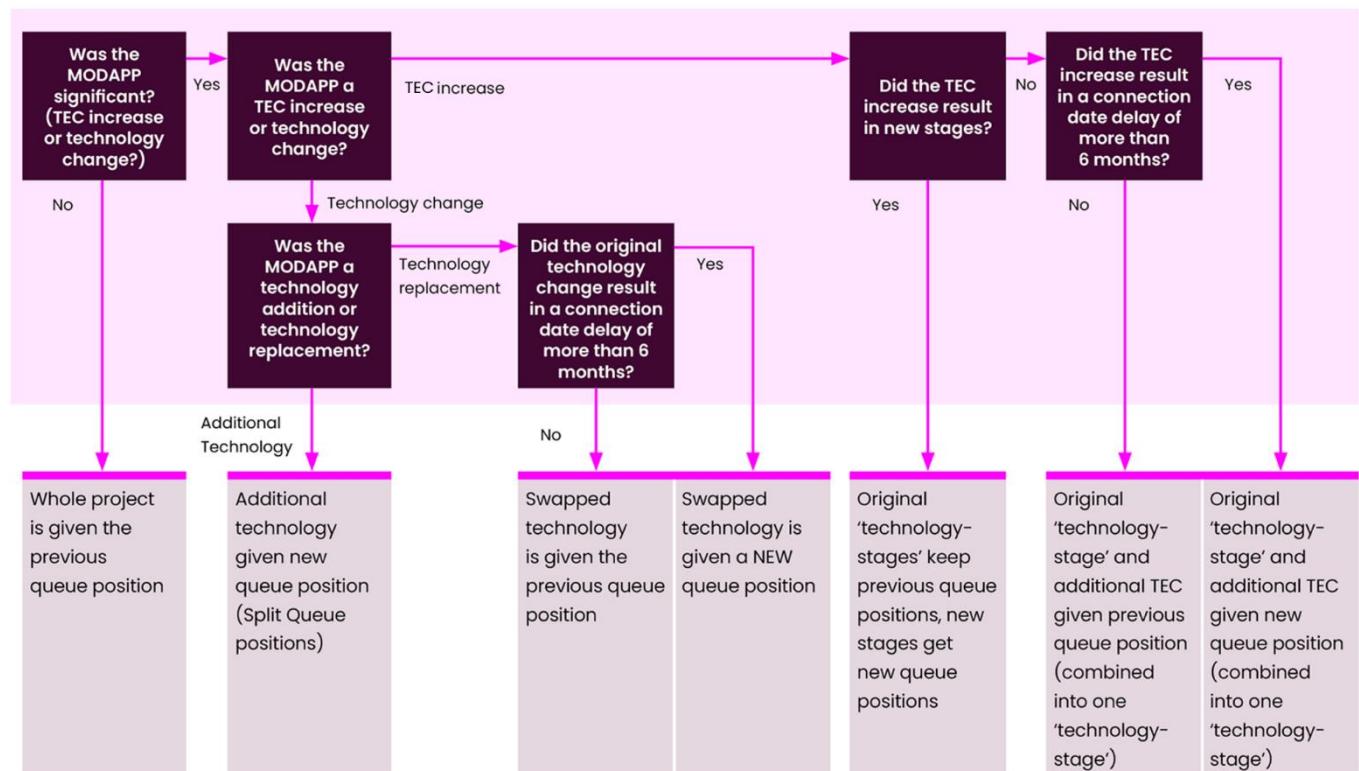
Identification of scenarios is completed by reviewing the initial queue data. For G2TWQ, there are two types of MODAPP that may constitute a 'material change' to a site in respect of the setting of the original queue position.

These are:

- an increase in TEC, Developer Capacity or Demand MWs for the project
- the addition of new technology and/or stage to the project

Both types of MODAPP result in a new queue item being formed. The effect of the MODAPP depends on the change it introduced to the project.

Projects may also have a combination of MODAPPs, resulting in a mix of rules and scenarios.


Summary of outcome of scenarios

The diagram below shows a summary of the outcome of different MODAPP scenarios. This diagram is provided for summary reference only. The detailed treatment of each scenario is set out in the remainder of this document.

Significant MODAPPs and queue position

The following summarises how a MODAPP is treated within the initial queue and the G2TWQ process.

Figure 5: Overview of how significant MODAPPs determine the queue position outcome for different technology and TEC change scenarios

Matrix of scenarios

The matrix below outlines the intersection of potential MODAPP scenarios that may affect queue formation and queue items.

Table 1: Matrix of MODAPP scenarios and their potential impact on queue formation

	No MODAPP	TEC/Developer Capacity/Demand MW increase MODAPP resulting in no additional stages	TEC/Developer Capacity/Demand MW increase MODAPP resulting in additional stages	New technology, no additional TEC/Developer Capacity/Demand MW MODAPP resulting in no additional stages
Single stage, Single technology	1 (a)	2 (a) 2 (b)	n/a	8 (a) 8 (b)
Single stage, multiple technologies	1 (b)	3 (a) 3 (b)	n/a	9
Multiple stages, single technology	1 (c)	4 (a) 4 (b)	6	10 (a) 10 (b)
Multiple stages, multiple technologies	1 (d)	5 (a) 5 (b)	7	11

Scenarios

Scenario 1

- 1 (a) Single stage, Single technology, no MODAPP
- 1 (b) Single Stage, multiple technologies, no MODAPP
- 1 (c) Multiple stages, single technology, no MODAPP
- 1 (d) Multiple stages, multiple technologies, no MODAPP

For the mapping of projects with no MODAPP, the given queue position of the project within the initial queue is applied to all queue items submitted within the Readiness Declaration (RD), regardless of stage or technology.

Table 2: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 1

Initial queue			Stage TEC	Technology Installed	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P1	Original Application	Solar	50	60	321

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P1	Solar	50	60

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P1	Original Application	Solar	50	321

Scenario 2

2 (a) Single stage, single technology, TEC increase MODAPP resulting in no additional stages and a connection date delay of six months or less between the original offer and the MODAPP.

2 (b) Single stage, single technology, TEC increase MODAPP resulting in no additional stages and a connection date delay of more than six months between the original offer and the MODAPP.

For projects with a single stage and single technology, the RD contains only one queue item. The mapping consists of assessing the initial signed offer and the associated TEC, Developer Capacity or Demand MW.

The rules are:

- The original offer queue position is assigned to the queue item in the RD up to the TEC signed for in the original offer.
- If the MODAPP resulted in no new stages, and the connection date delay was six months or less, the MODAPP is not considered 'significant', so the original queue position applies to all queue items.
- If the MODAPP resulted in no new stages and the connection date delay was more than six months, the MODAPP is considered significant and the entire project is assigned the queue position associated with that MODAPP.

Table 3: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 2

2 (a)

Initial queue			Stage TEC	Technology Installed	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P2	Original Application	Solar	50	60	321
P2	MODAPP	Solar	20	20	390

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P2	Solar	70	80

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P2	Original Application	Solar	70	321

2 (b)

Initial queue			Stage TEC	Technology Installed	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P2	Original Application	Solar	50	60	321
P2	MODAPP	Solar	20	20	390

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P2	Solar	70	80

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P2	MODAPP	Solar	70	390

Scenario 3

- 3 (a) Single Stage, multiple technologies, TEC increase MODAPP resulting in no additional stages and connection date delay of six months or less
- 3 (b) Single Stage, multiple technologies, TEC increase MODAPP resulting in no additional stages and a connection date delay of more than six months.

For projects with a single stage and multiple technologies, the RD has multiple queue items equal to the number of technologies within the project. The mapping consists of assessing the initial signed offer, all MODAPP offers to increase TEC or add technologies within the offers for each technology.

The rules are:

- The original offer queue position is given to the queue items in the RD that are found in the original offer. For hybrids, the lower of Installed Capacity and TEC is used for queue formation.
- For MODAPPs that increase capacity, the initial queue position depends on whether there was a connection date delay of more than six months. If the delay was six months or less, the original queue position is used. If the delay was more than six months, the MODAPP queue position is used for the whole project.

Table 4: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 3

3 (a)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P3	Original Application	Solar	30	20	321
P3	Original Application	Battery	30	15	321
P3	MODAPP	Solar	20	10	390
P3	MODAPP	Battery	20	10	390

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P3	Solar	50	30
P3	Battery	50	25

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P3	Original Application	Solar	30	321
P3	Original Application	Battery	25	321

3 (b)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P3	Original Application	Solar	30	20	321
P3	Original Application	Battery	30	15	321
P3	MODAPP	Solar	20	10	390
P3	MODAPP	Battery	20	10	390

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P3	Solar	50	30
P3	Battery	50	25

Queue items to go into filter queue process

S			Capacity for	
•	•	•	•	•
•	•	•	•	•

Project ID	Type	Technology	Queue Formation	Queue Formation position
P3	MODAPP	Solar	30	390
P3	MODAPP	Battery	25	390

Scenario 4

4 (a) Multiple stages, single technology, TEC increase MODAPP resulting in no additional stages and a connection date delay of six months or less

4 (b) Multiple stages, single technology, TEC increase MODAPP resulting in no additional stages and a connection date delay of more than six months

For projects with multiple stages and a single technology, the RD has queue items equal to the number of stages. The mapping consists of assessing the initial signed offer, MODAPPs and the TEC associated with each stage in each offer.

The rules are:

- The original offer queue position is given to the queue items in the RD up to the TEC signed for in the original offer at each given stage.
- All subsequent TEC MW increases across MODAPPs depend on whether there has been a connection date delay of more than six months. If the delay was six months or less, the original queue position is used. If the delay was more than six months, the MODAPP queue position is used for the whole project.

Table 5: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 4

4 (a)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P4	Original Application Stage 1	Solar	30	40	120
P4	Original Application Stage 2	Solar	50	50	120
P4	MODAPP stage 1	Solar	20	25	540
P4	MODAPP stage 2	Solar	50	50	540

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P4	Solar Stage 1	50	65
P4	Solar Stage 2	100	100

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P4	Original Application Stage 1	Solar	50	120
P4	Original Application Stage 2	Solar	100	120

4 (b)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P4	Original Application Stage 1	Solar	30	40	120
P4	Original Application Stage 2	Solar	50	50	120
P4	MODAPP stage 1	Solar	20	25	540
P4	MODAPP stage 2	Solar	50	50	540

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P4	Solar Stage 1	50	65
P4	Solar Stage 2	100	100

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P4	MODAPP stage 1	Solar	50	540
P4	MODAPP stage 2	Solar	100	540

Scenario 5

5 (a) Multiple stages, multiple technologies, TEC increase MODAPP resulting in no additional stages and connection date delay of six months or less

5 (b) Multiple stages, multiple technologies, TEC increase MODAPP resulting in no additional stages and connection date delay of more than six months

For projects with multiple stages and multiple technologies, the RD has multiple queue items equal to the number of technology-stages within the project. The mapping consists of assessing the initial signed offer, all MODAPP offers to increase TEC or add technologies within the offers for each technology and each stage.

The rules are:

- The original offer queue position is assigned to the queue items in the RD that are present in the original offer. For hybrids, the lower of Installed Capacity or TEC is used for queue formation.
- All subsequent TEC MW increases across MODAPPs depend on whether there has been a connection date delay of more than six months. If the delay was six months or less, the

original queue position is used. If the delay was more than six months, the MODAPP queue position is used.

Table 6: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 5

5 (a)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P5	Original Application stage 1	Solar	15	10	44
P5	Original Application stage 2	Solar	30	20	44
P5	MODAPP stage 1	Solar	15	10	107
P5	MODAPP Stage 2	Solar	30	20	107
P5	Original Application stage 1	Battery	15	5	44
P5	Original Application stage 2	Battery	30	10	44
P5	MODAPP stage 1	Battery	15	5	107
P5	MODAPP Stage 2	Battery	30	10	107

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P5	Solar Stage 1	30	20
P5	Solar Stage 2	60	40
P5	Battery Stage 1	30	10
P5	Battery Stage 2	60	20

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P5	Original Application stage 1	Solar	20	44
P5	Original Application stage 2	Solar	40	44
P5	Original Application stage 1	Battery	10	44
P5	Original Application stage 2	Battery	20	44

5 (b)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P5	Original Application stage 1	Solar	15	10	44
P5	Original Application stage 2	Solar	30	20	44
P5	MODAPP stage 1	Solar	15	10	107
P5	MODAPP Stage 2	Solar	30	20	107
P5	Original Application stage 1	Battery	15	5	44

P5	Original Application stage 2	Battery	30	10	44
P5	MODAPP stage 1	Battery	15	5	107
P5	MODAPP Stage 2	Battery	30	10	107

Readiness declaration				Technology Installed
Project ID	Technology	Stage TEC	Capacity	
P5	Solar Stage 1	30	20	
P5	Solar Stage 2	60	40	
P5	Battery Stage 1	30	10	
P5	Battery Stage 2	60	20	

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P5	MODAPP stage 1	Solar	20	107
P5	MODAPP Stage 2	Solar	40	107
P5	MODAPP stage 1	Battery	10	107
P5	MODAPP Stage 2	Battery	20	107

Scenario 6

6 Multiple stages, single technology, TEC increase MODAPP resulting in additional stages

For projects with multiple stages and a single technology, the RD has queue items equal to the number of stages. The mapping consists of assessing the initial signed offer, MODAPPs and the TEC associated with each stage at each offer.

The rules are:

- The original offer queue position is likely to contain some of the stages in full as shown in the RD. Where this is the case, the full stage queue items in the RD are given the original queue position for all stages in the original offer.
- All subsequent TEC increases within MODAPPs in this case correspond to a new stage being formed. As a result, the new stages have the later queue position associated with the MODAPP.

Table 7: Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 6

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P6	Original Application Stage 1	Solar	50	60	847
P6	MODAPP Stage 2	Solar	25	30	1034

Readiness declaration				Technology Installed
Project ID	Technology	Stage TEC	Capacity	

P6	Solar stage 1	50	60
P6	Solar stage 2	20	20

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P6	Original Application Stage 1	Solar	50	847
P6	MODAPP Stage 2	Solar	20	1034

Scenario 7

7 Multiple Stage, multiple technologies, TEC increase MODAPP resulting in additional stages

For projects with multiple stages and multiple technologies, the RD has multiple queue items.

The mapping consists of assessing the initial signed offer, MODAPPs and the TEC associated with each stage at each offer.

The rules are:

- The original offer queue position is likely to contain some of the stages in full as shown in the RD. Where this is the case, the technology queue items within those stages in the RD are given the original queue position for all stages in the original offer.
- All subsequent TEC increases for a new stage within MODAPPs correspond to a new stage being formed. As a result, the new stages have the later queue position associated with the MODAPP and all technologies within that new stage are given the new queue position if present in the MODAPP.

Table 8: Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 7

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P7	Original Application Stage 1	Solar	100	50	847
P7	Original Application Stage 1	Onshore Wind	100	70	847
P7	MODAPP Stage 2	Onshore Wind	30	30	1034

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P7	Solar stage 1	100	50
P7	Onshore Wind stage 1	100	70
P7	Onshore Wind stage 2	30	30

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P7	Original Application Stage 1	Solar	50	847
P7	Original Application Stage 1	Onshore Wind	70	847
P7	MODAPP Stage 2	Onshore Wind	30	1034

Scenario 8

8 (a) Single Stage, single technology, new technology, no additional TEC MODAPP resulting in no additional stages and a connection date delay of more than six months

8 (b) Single Stage, single technology, new technology, no additional TEC MODAPP resulting in no additional stages and a connection date delay of six months or less

For projects with a single stage and single technology, a MODAPP that introduces a new technology with no additional TEC represents a replacement of technology. The new technology is what appears in the RD and there is only one queue item.

The rules are:

- If the new technology leads to a connection date delay of more than six months, the queue item in the RD is given the queue position from when that technology was added to the contract (assuming no further TEC increases).
- If the new technology leads to a connection date delay of six months or less, it is given the same queue position as the previous technology.
- Any technology that has been removed from the contract no longer appears in the queue.

Table 9: Examples of initial queue data, Readiness Declaration data and resulting queue items for Scenario 8

8 (a)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P8	Original Application	Solar	50	60	900
P8	MODAPP	remove solar	0	-60	1431
P8	MODAPP	Battery	0	60	1431

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P8	Battery	50	60

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P8	MODAPP	Battery	50	1431

8 (b)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P8	Original Application	Solar	50	60	900
P8	MODAPP	Remove solar	0	-60	900
P8	MODAPP	Battery	0	60	900

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P8	Battery	50	60

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P8	MODAPP	Battery	50	900

Scenario 9

9 Single stage, multiple technologies, new technology, no additional TEC MODAPP resulting in no additional stages

For projects with a single stage and a MODAPP to add a technology without any addition of TEC, the new technology added is given a new queue position. All technologies present in the original offer retain the original queue position.

The rules are:

- The technologies within the original application are given the original queue position.
- Subsequent technology additions are given subsequent queue positions.

Table 10: Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 9

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P9	Original Application	Solar	50	60	321
P9	MODAPP	Battery	0	20	390

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P9	Solar	50	60
P9	Battery	50	20

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P9	Original Application	Solar	50	321
P9	MODAPP	Battery	20	390

Scenario 10

10 Multiple stages, single technology, new technology, no additional TEC MODAPP resulting in no additional stages

10 (a) Multiple stages, single technology, new technology, no additional TEC MODAPP resulting in no additional stages and a connection date delay of more than six months

10 (b) Multiple stages, single technology, new technology, no additional TEC MODAPP resulting in no additional stages and a connection date delay of six months or less

For projects with multiple stages and single technology, a MODAPP that introduces a new technology with no additional TEC represents a replacement of technology. The new technology is what appears in the RD for each stage and there are the same number of queue items as there are stages.

The rules are:

- If the replacement technology leads to a connection date delay of more than six months, the queue item in the RD is given the queue position from when that technology was added to the contract (assuming no further TEC increases).
- If the replacement technology leads to a connection date delay of six months or less, it is given the same queue position as the previous technology.
- Any technology that has been removed from the contract no longer appears in the queue.

Table 11: Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 10

10 (a)

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P10	Original Application stage 1	Solar	40	50	900
P10	Original Application stage 2	Solar	20	30	900
P10	MODAPP	Remove solar	0	-80	1431
P10	MODAPP stage 1	Battery	0	50	1431
P10	MODAPP stage 2	Battery	0	30	1431

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P10	Battery	40	50
P10	Battery	20	30

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P10	MODAPP stage 1	Battery	40	1431
P10	MODAPP stage 2	Battery	20	1431

10 (b) – as per above, but the queue formation position of the battery would be 900.

Scenario 11

11 Multiple stages, multiple technologies, new technology, no additional TEC MODAPP resulting in no additional stages

For projects with multiple stages and a MODAPP to add a technology without the addition of TEC, the new technology added has a new queue position. All technologies present within each stage of the original offer retain the original queue position.

The rules are:

- The technologies within the original application are given the original queue position.
- Subsequent technology additions within MODAPPs are given subsequent queue positions.

Table 12: Example of initial queue data, Readiness Declaration data and resulting queue items for Scenario 11

Initial queue			Stage TEC	Technology	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P11	Original Application stage 1	Solar	50	50	900
P11	Original Application stage 2	Solar	30	30	900
P11	MODAPP stage 1	Battery	0	20	1431
P11	MODAPP stage 2	Battery	0	10	1431

Readiness declaration			Technology Installed
Project ID	Technology	Stage TEC	Capacity
P11	Solar Stage 1	50	50
P11	Solar Stage 2	30	30
P11	Battery Stage 1	50	20
P11	Battery Stage 2	30	10

Queue items to go into filter queue process

Combined			Capacity for	
Project ID	Type	Technology	Queue Formation	Queue Formation position
P11	Original Application stage 1	Solar	50	900
P11	Original Application stage 2	Solar	30	900
P11	MODAPP stage 1	Battery	20	1431
P11	MODAPP stage 2	Battery	10	1431

Partial protections

If a project has partial protections, this affects how the RD information is mapped. For example, if a project has 100 MW of TEC and only 80 MW of this TEC is protected, the RD queue items are split into two: a protected section of 80 MW and an unprotected section of 20 MW.

Assuming this project had an original application TEC of 50 MW and later doubled its capacity to 100 MW, the following is how we map this example.

Table 13: Example of initial queue data, Readiness Declaration data and resulting queue items for a project with partial protections

Initial queue			Stage TEC	Technology Installed	
Project ID	Type	Technology	Capacity increase	Capacity increase	Initial queue position
P12	Original Application Stage 1	Solar	50	60	321
P12	MODAPP Stage 2	Solar	50	60	1094

Readiness declaration			Technology Installed	
Project ID	Technology	Stage TEC	Capacity	Priority
P12	Solar Stage 1	50	60	Protected
P12	Solar Stage 2	30	30	Protected
P12	Solar Stage 2	20	30	Planning submitted

Queue items to go into filter queue process

Combined			Capacity for		
Project ID	Type	Technology	Queue Formation	Queue Formation position	Priority
P12	Original Application Stage 1	Solar	50	321	Protected
P12	MODAPP Stage 2	Solar	30	1094	Protected
P12	MODAPP Stage 2	Solar	20	1094	Planning Submitted

Small and Medium Embedded generation

For Small and Medium Embedded generation projects, all projects in a project progression are inserted into the combined transmission and distribution queue based on the contract signing date of the project progression between the NESO and the DNO⁴. This mirrors how transmission connected projects and large embedded generators are handled. Within each project progression, developers are sorted by the individual project signing date. This ensures that the distribution queue and the transmission queue are aligned.

In a similar manner to transmission, in the event of a ‘tiebreak’ of two or more queue items that have the same contract signing date between NESO and the DNO, the earliest connection date in the project progression is used to determine relative initial queue positions when inserting the project progression into the transmission queue (earlier connection date receives earlier initial queue position)..

⁴ Including the ‘28 day rule’ where we use the DNO signature date if that is more than 28 days later than the NESO countersignature date

3. Classifications

3.1 Classification of Long Duration Energy Storage and low carbon dispatchable technologies under G2TWQ

Long Duration Energy Storage (LDES)

The assessments and calculations below were carried out in accordance with Ofgem's [Long Duration Electricity Storage: Technical Decision Document](#), published on 11 March 2025.

Where an energy storage project comprised a single specific technology, the total cumulative energy storage potential (MWh) was divided by the Transmission Entry Capacity (TEC) (MW) for the final stage of the project. Where the value was greater than eight, the project was considered to meet the definition of LDES.

Where an energy storage project comprised a single storage technology and one additional technology, the total cumulative energy storage potential (MWh) was divided by the lower of the TEC or the total Installed Capacity at the final stage of the project. Where the value was greater than eight, the project was considered LDES.

Where a project included a single lithium-ion battery technology, that element of the project was always allocated to the Battery category for G2TWQ, in line with Ofgem's *Technical Decision Document*.

Where a project included two energy storage technologies and one of these was lithium-ion battery, the lithium-ion element was always allocated to the Battery category for G2TWQ, in line with Ofgem's *Technical Decision Document*. The LDES calculation was then carried out only on the non-lithium-ion technology, as described above.

For pumped storage projects, the TEC or Installed Capacity must be no less than 100 MW. Any pumped storage project below 100 MW does not meet the LDES definition, in line with Ofgem's *Technical Decision Document*.

For all other storage technologies, the TEC must be no less than 50 MW. Any project below 50 MW does not meet the LDES definition, in line with Ofgem's *Technical Decision Document*.

Low carbon dispatchable power

For each generating unit requiring the use of gas, the RD asked the following question:

"Are you burning 100% hydrogen or do you have Carbon Capture, Utilisation, and Storage (ccus) installed on your generating units?"

Where a customer answered 'yes' in the RD, the generating unit was allocated to the Low Carbon Dispatchable technology category for G2TWQ.

Where a customer answered 'no', the generating unit was allocated to the Unabated Gas technology category for G2TWQ.

4. Readiness, Protection and Planning

4.1 Principles used to carry out 'readiness', 'protection' and 'planning status checks'

Initial checks

Most initial checks focused on minimal confirmations, such as opening the document and ensuring it was relevant to the check. The substantial checks carried out during the initial checks phase were the Protections checks. Please see the relevant section below.

Detailed checks

Detailed checks focused on confirming that the evidence submitted satisfied the criteria for each check. The following were considered detailed checks and are explained below:

- director check
- Original Red Line Boundary check
- minimum acreage
- Land Rights
- Development Consent Order

Director check

NESO requested evidence to verify that the person signing the Readiness Declaration (RD) was a company director or a duly authorised person where applicable. The evidence provided was verified against public records such as Companies House where the signatory indicated they were a statutory director.

Where public records confirmed that the signatory was an active director, the check was passed. Where the signatory was not listed as an active director, NESO checked whether a letter had been provided authorising the signatory to sign the Director Declaration or explaining why the company was not listed on Companies House. This evidence was assessed against publicly available information and, where the explanation was sufficient, the check was passed. Where insufficient information was provided, the User was contacted to clarify the evidence.

Original Red Line Boundary check

NESO required the submission of Original Red Line Boundaries (ORLB) as part of the Gate 2 to Whole Queue Readiness Declaration (G2TWQ) submission process. Each ORLB needed to include coordinates, a scale, a north-facing compass and clearly identify the relevant plot or plots of land. GEOJSON files were also encouraged.

NESO used the coordinates to map the plots and determine whether any overlaps existed. Where no overlap was found, the check was passed. Where an overlap seemed possible, the relevant projects were reviewed further to confirm whether an overlap existed.

When an overlap was confirmed, NESO compared the ORLBs to determine whether both projects included the same plots of land. If not, the check was passed. Where shared plots existed, NESO checked whether the User had supplied a justification. Checks were passed where satisfactory justification was provided. Where no justification was given, or where it was insufficient, the User was contacted to explain the overlap. Satisfactory justification allowed the check to pass; otherwise, the check was failed.

Minimum acreage

NESO requested the available acreage of the project, the technology type and Installed Capacity as part of the G2TWQ Readiness Declaration. The technology type and Installed Capacity provided by the User were used to calculate the minimum acreage requirement based on the Energy Density Table (as provided in the [Letter of Authority Guidance](#)). The minimum acreage calculated for each technology was then compared to the available acreage submitted by the User.

Where the available acreage was equal to or greater than the minimum acreage, the check was passed. Where the available acreage was lower, NESO checked whether the User had provided a justification. If the justification was found and considered satisfactory, the check was passed. If no justification was provided or if the justification was insufficient, the User was asked to provide justification through the resubmission process.

Where a satisfactory justification was provided through resubmission, the check was passed. Where none was provided or justification remained insufficient, the check was failed.

Land Rights

As part of G2TWQ, Users applying through the Land Route were required to submit evidence relevant to their Land Rights (the relevant Land Rights documents).

NESO checked that the User was named on the relevant Land Rights documents, that signatures were present, and that each document met the criteria set out in the Gate 2 Criteria Methodology. Where the documents raised no questions, the check was passed.

Where documents were incomplete, unclear or did not meet the Gate 2 Criteria Methodology, the User was given an opportunity to clarify through the resubmission process. Where clarification was sufficient, the check was passed. Where no clarification was provided or where it was insufficient, the check was failed.

Development Consent Order

For G2TWQ applications that followed the Planning Route to Readiness, NESO checked the following information for the DCO evidence submitted:

- **Application reference number:** whether the reference in the RD matched the information on the Planning Inspectorate website (either application or decision letter, as relevant).

- **Project name:** Whether the project name in the RD matched the data on the Planning Inspectorate website.
- **Developer or company name:** Whether the name in the RD matched the data on the Planning Inspectorate website.
- **Technology type, where available:** Whether the technology types listed in the DCO documentation aligned with the RD.
- **Capacity, where available:** Whether the capacity in the DCO documentation aligned with the RD.
- **Location:** Whether the location in the DCO documentation aligned with the RD.

4.2 Protections

As part of the Strategic Alignment Criteria, Users could apply for either Protections Clause 1 or Protections Clause 2a, depending on the project.

When checking whether the project met the criteria for the selected Protections Clause, NESO followed the process below:

- The clause selected and the relevant route were confirmed.
- Depending on the route, a combination of the following evidence was checked: planning application submissions and decisions, financial decision documents, support or subsidy contracts and contracted completion dates.

To verify planning submissions or decisions, NESO accessed the websites of the relevant planning authorities and checked the project against public records.

To verify financial decision documents, NESO checked whether they related to the project and whether the User was a party to them.

To meet the requirements of the relevant Protections Clause, all conditions had to be met for the full capacity. Where some capacity did not meet the criteria, that capacity was not protected.

Contract for Difference, Capacity Market and Ofgem Cap and Floor

To verify whether a project had a live support or subsidy contract (such as a Contract for Difference (CfD), Capacity Market (CM), Network Services or Cap and Floor), NESO checked the public records of the relevant contract.

Summary of how NESO carried out checks to determine whether a project was fully or partially protected by having a live:

- Contract for Difference
- Capacity Market contract
- Ofgem Cap and Floor contract (relevant to interconnectors only)

NESO checked publicly available registers for each scheme and confirmed information with Ofgem and relevant NESO colleagues. If a contract was not listed as terminated, NESO considered it live.

NESO then used project details, including those submitted in the RD, to match the projects to the relevant registers.

To determine the level of protected capacity, NESO compared the capacity under the relevant contract to the TEC requested in the RD:

- Where the contract capacity was lower than the TEC, the capacity under the contract was protected and termed 'partial protection'. This means that any remaining capacity not covered by the contract was assigned the appropriate readiness status (that is, land rights only or planning submitted).
- Where the TEC and the capacity under the relevant contract were the same, the project was considered fully protected.

Planning status

Summary of how we checked whether a project has:

- submitted planning (that is, Queue Management Milestone M1)
- secured planning consent (that is, Queue Management Milestone M2)

Customers were asked to provide evidence of their planning position when they submitted their RD.

The evidence provided was used to search for the project on the relevant planning authority websites and to confirm that public records matched the project details.

Where the planning authority website showed records that matched the project and confirmed that the planning application had been validated, the M1 check was passed.

Where planning had not yet been decided (either at first decision or following appeal), the M2 check was not passed. Where planning permission was refused and no appeal was submitted, or where an appeal had been refused, the M2 check was not passed.

Where a User indicated that the project had previously met M1 or M2 before submitting the RD, NESO checked internal records to validate this position. Where the internal information confirmed it, the check was passed. Where NESO could not validate the information, the User was required to resubmit evidence.

4.3 Policy for evidence resubmission during G2TWQ

Initial checks

Customers were permitted to resubmit evidence during initial checks only in limited circumstances.

NESO updated cases manually (that is, customers were not allowed to amend their RD themselves and resubmit; a NESO colleague updated the case on their behalf).

Any resubmitted evidence had to be signed off by a customer-verified director as part of the RD.

Detailed checks

NESO committed to getting back to customers during detailed checks where evidence was unclear.

This resubmission process covered:

- minimum acreage
- director verification
- Land Rights
- planning
- Original Red Line Boundary

Where clarification was sought, this related only to evidence submitted before the G2TWQ evidence window closed on 26 August 2025. Any additional evidence provided through resubmission was limited to explanatory letters signed by a customer-verified director, consistent with the requirements of the RD.

5. Substitution Summary

5.1 Adjacency matrix for allowable and non-allowable substitutions under G2TWQ

Context for substitution

In line with the Connections Network Design Methodology (CNDM) section 5.16, zonal substitution may be used where there is an oversupply of capacity in a technology sub-queue in one zone and an undersupply of capacity in a technology sub-queue in another zone compared with the *Clean Power 2030 Action Plan*'s permitted capacities. In such cases, substitution may be used to donate permitted capacity from one zone to another.

Allowable substitutions

As set out in the CNDM, substitution is permitted only where all the following criteria are met:

- The undersupply in Zone A and the oversupply in Zone B relate to the same technology.
- Zone A and Zone B are geographically overlapping or adjacent zones.
- The project or projects in Zone B are not known to have a significantly worse impact on local constraints than a project connecting in Zone A.

Substitution applies only to technologies with zonal capacity allocations in the *Clean Power 2030 Action Plan*, namely solar, onshore wind and batteries.

Methodology to determine non-allowable and allowable substitutions

Bullets a and b above are handled automatically through the design of the queue formation system used by NESO and are not described here.

For bullet c, NESO has developed a tool to identify how much onshore wind, solar and battery capacity can be substituted to adjacent zones, and how certain costs (constraints, combined cycle gas turbine (CCGT) redispatch and carbon correction) are likely to be affected.

The tool uses onshore wind and solar curtailment in the Balancing Mechanism (BM) as a guiding factor to determine the capacity that can be substituted into adjacent zones. The approach favours the movement of plant capacity where the average curtailment percentage in the adjacent zone or zones is lower than the curtailment percentage in the base scenario, thereby favouring higher renewable penetration and lower overall system costs.

The following principles are applied when assessing substitutions:

- When a plant is substituted to an adjacent zone, its curtailment level is adjusted to the average curtailment level of the adjacent zone. As a result, the new level of generation in the BM increases or decreases. Any change in onshore wind or solar generation is

compensated by CCGT redispatch in the BM and further adjusted for carbon correction cost.

- Substitutions continue until the cost (constraints, CCGT redispatch and carbon correction) in the adjacent zone becomes greater than the base case.

A battery is considered for substitution from its parent zone (Transmission or Distribution) to an adjacent zone (Transmission or Distribution) only where both of the following conditions are met:

1. The average load factor of all batteries in the adjacent zone is greater than the individual load factor of the batteries in the parent zone
2. The renewable energy constraint cost in the adjacent zone is higher than that in the parent zone, indicating greater renewable energy curtailment.

Renewable energy includes onshore wind, offshore wind and solar.

This approach favours relocating Battery Energy Storage Systems (BESS) to adjacent zones with higher renewable energy curtailment and greater utilisation potential, enabling the battery to absorb more renewable energy and help reduce curtailment.

Appendix A:

List of Abbreviations

Table 14: List of abbreviations

Abbreviations	Definitions
BESS	Battery Energy Storage System
BM	Balancing Mechanism
CCGT	Combined Cycle Gas Turbine
CCUS	Carbon Capture, Utilisation and Storage
CfD	Contract for Difference
CM	Capacity Market
CNDM	Connections Network Design Methodology
CP30	Clean Power 2030
DCO	Development Consent Order
DESNZ	Department for Energy Security and Net Zero
DNO	Distribution Network Operator
G2TWQ	Gate 2 to Whole Queue
GEOJSON	Geographic JSON (geospatial data format)
GSP	Grid Supply Point
GW	Gigawatt
LDES	Long Duration Energy Storage
M1	Queue Management Milestone 1 (planning submitted)
M2	Queue Management Milestone 2 (planning consent granted)
MODAPP	Modification Application
...	...
...	...

MW	Megawatt
MWh	Megawatt hour
NESO	National Energy System Operator
ORLB	Original Red Line Boundary
RD	Readiness Declaration
TEC	Transmission Entry Capacity
TO	Transmission Owner
TOCO	Transmission Owner Construction Offer

NESO

Faraday House
Warwick Technology Park
Gallows Hill
Warwick
CV34 6DA
United Kingdom

Registered in England and Wales
No. 11014226

neso.energy