

All Recipients of the Serviced Grid Code

National Energy System Operator
Faraday House
Gallows Hill
Warwick
CV34 6DA
Grid.Code@neso.energy
www.neso.energy

11 June 2025

THE SERVICED GRID CODE - ISSUE 6 REVISION 33

INCLUSION OF REVISED SECTION

- European Connection Conditions
- Operating Code 6B
- Balancing Code 1
- Balancing Code 2

SUMMARY OF CHANGES

These changes arise from the implementation of: **GC0180: Corrections to the Grid Code following implementation of GC0175**

Many thanks,

Code Administrator

National Energy System Operator

THE GRID CODE

ISSUE 6

REVISION 33

11 June 2025

© 2025 Copyright owned by National Energy System Operator, all rights reserved.

No part of this publication may be reproduced in any material form (including photocopying and restoring in any medium or electronic means and whether or not transiently or incidentally) without the written permission of **National Energy System Operator**, except:

- to the extent that any party who is required to comply (or is exempt from complying) with the provisions
 under the Electricity Act 1989 reasonably needs to reproduce this publication to undertake its licence or
 statutory duties within Great Britain (or any agent appointed so to act on that party's behalf); and
- 2. in accordance with the provisions of the Copyright, Designs and Patents Act 1988.

EUROPEAN CONNECTION CONDITIONS

(ECC)

CONTENTS

(This contents page does not form part of the Grid Code)

<u>Paragra</u>	aph No/Title	Page Number
ECC.1	INTRODUCTION	2
ECC.2	OBJECTIVE	3
ECC.3	SCOPE	3
ECC.4	PROCEDURE	5
ECC.5	CONNECTION	5
ECC.6	TECHNICAL, DESIGN AND OPERATIONAL CRITERIA	8
ECC.7	SITE RELATED CONDITIONS	88
ECC.8	ANCILLARY SERVICES	96
APPEN	DIX E1 - SITE RESPONSIBILITY SCHEDULES	98
PR	ROFORMA FOR SITE RESPONSIBILITY SCHEDULE	101
APPEN	DIX E2 - OPERATION DIAGRAMS	106
PA	RT 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS	106
PA	RT E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS	109
	RT E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPE AGRAMS	
OPERA	DIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFI TING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT	112
	DIX 4 - FAULT RIDE THROUGH REQUIREMENTS	_
	DIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTONNECTION OF SUPPLIES AT LOW FREQUENCY	
EXCITA	DIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTO ATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS POWER GENEI LES,	RATING
VOLTAG OTSDU	DIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTO GE CONTROL SYSTEMS FOR AC CONNECTED ONSHORE POWER PARK MODUL IW PLANT AND APPARATUS AT THE INTERFACE POINT HVDC SYSTEMS AND R VDC CONVERTER STATIONS	ES AND EMOTE
VOLTA	DIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTORIE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE INMODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES	POWER

ECC.1 INTRODUCTION

ECC.1.1 The **European Connection Conditions** ("**ECC**") specify both:

- (a) the minimum technical, design and operational criteria which must be complied with by:
 - (i) any EU Code User connected to or seeking connection with the National Electricity Transmission System, or
 - (ii) **EU Generators** or **HVDC System Owners** connected to or seeking connection to a **User's System** which is located in **Great Britain** or **Offshore**, or
 - (iii) Network Operators who are EU Code Users
 - (iv) Network Operators who are GB Code Users but only in respect of:-
 - (a) Their obligations in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** for whom the requirements of ECC.3.1(b)(iii) apply alone; and/or
 - (b) The requirements of this ECC only in relation to each EU Grid Supply Point. Network Operators in respect of all other Grid Supply Points should continue to satisfy the requirements as specified in the CCs.
 - (v) Non-Embedded Customers who are EU Code Users
- (b) the minimum technical, design and operational criteria with which The Company will comply in relation to the part of the National Electricity Transmission System at the Connection Site with Users. In the case of any OTSDUW Plant and Apparatus, the ECC also specify the minimum technical, design and operational criteria which must be complied with by the User when undertaking OTSDUW.
- (c) The requirements of **Assimilated Law** (Commission Regulation (EU) 2016/631) shall not apply to
 - (i) Power Generating Modules that are installed to provide backup power and operate in parallel with the Total System for less than 5 minutes per calendar month while the System is in normal state. Parallel operation during maintenance or commissioning of tests of that Power Generating Module shall not count towards that five minute limit.
 - (ii) Power Generating Modules connected to the Transmission System or Network Operators System which are not operated in synchronism with a Synchronous Area.
 - (iii) Power Generating Modules that do not have a permanent Connection Point or User System Entry Point and used by The Company to temporarily provide power when normal System capacity is partly or completely unavailable.
 - (iv) Electricity Storage Modules.
- (d) Storage Users are required to comply with the entirety of the ECC but are not subject to the requirements of Assimilated Law (Commission Regulation (EU) 2016/631, Commission Regulation (EU) 2016/1388 and Commission Regulation (EU) 2016/1485). The requirements of the ECC shall therefore be enforceable against Storage Users under the Grid Code only (and not under any of the aforementioned Assimilated Law) and any derogation sought by a Storage User in respect of the ECC shall be deemed a derogation from the Grid Code only (and not from the aforementioned Assimilated Law).

ECC.2 OBJECTIVE

- The objective of the **ECC** is to ensure that by specifying minimum technical, design and operational criteria the basic rules for connection to the **National Electricity Transmission System** and (for certain **Users**) to a **User's System** are similar for all **Users** of an equivalent category and will enable **The Company** to comply with its statutory and **ESO Licence** obligations and the applicable **Assimilated Law**.
- In the case of any OTSDUW the objective of the ECC is to ensure that by specifying the minimum technical, design and operational criteria the basic rules relating to an Offshore Transmission System designed and constructed by an Offshore Transmission Licensee and designed and/or constructed by a User under the OTSDUW Arrangements are equivalent.
- Provisions of the ECC which apply in relation to OTSUW and OTSUA, and/or a Transmission Interface Site, shall (in any particular case) apply up to the OTSUA Transfer Time, whereupon such provisions shall (without prejudice to any prior non-compliance) cease to apply, without prejudice to the continuing application of provisions of the ECC applying in relation to the relevant Offshore Transmission System and/or Connection Site. It is the case therefore that in cases where the OTSUA becomes operational prior to the OTSUA Transfer Time that a EU Generator is required to comply with this ECC both as it applies to its Plant and Apparatus at a Connection Site\Connection Point and the OTSUA at the Transmission Interface Site/Transmission Interface Point until the OTSUA Transfer Time and this ECC shall be construed accordingly.
- In relation to OTSDUW, provisions otherwise to be contained in a **Bilateral Agreement** may be contained in the **Construction Agreement**, and accordingly a reference in the **ECC** to a relevant **Bilateral Agreement** includes the relevant **Construction Agreement**.

ECC.3 SCOPE

- ECC.3.1 The ECC applies to The Company and to Users, which in the ECC means:
 - (a) EU Generators (other than those which only have Embedded Small Power Stations), including those undertaking OTSDUW including Power Generating Modules, and DC Connected Power Park Modules. For the avoidance of doubt, Electricity Storage Modules are included within the definition of Power Generating Modules for which the requirements of the ECC would be equally applicable.
 - (b) Network Operators but only in respect of:-
 - (i) Network Operators who are EU Code Users
 - (ii) Network Operators who only have EU Grid Supply Points
 - (iii) Embedded Medium Power Stations not subject to a Bilateral Agreement as provided for in ECC.3.2, ECC.3.3, EC3.4, EC3.5, ECC5.1, ECC.6.4.4 and ECA.3.4;
 - (iv) Notwithstanding the requirements of ECC3.1(b)(i)(ii) and (iii), Network Operators who own and/or operate EU Grid Supply Points, are only required to satisfy the requirements of this ECC in relation to each EU Grid Supply Point. Network Operators in respect of all other Grid Supply Points should continue to satisfy the requirements as specified in the CCs.
 - (c) Non-Embedded Customers who are also EU Code Users;
 - (d) HVDC System Owners who are also EU Code Users;
 - (e) **BM Participants** and **Externally Interconnected System Operators** who are also **EU Code Users** in respect of ECC.6.5, ECC.7.9, ECC.7.10 and ECC.7.11 only; and.

- (f) In relation to Distribution Restoration Zones, Restoration Contractors who are Non-CUSC Parties and whose Embedded Plant needs to comply with the requirements of EREC G99, other than those included in (a) to (e) above, shall only be required to satisfy ECC.6.1.2, ECC.6.2.2.1.2, ECC.6.2.2.7, ECC.6.3, ECC.6.6, ECC.7.10, ECC.7.11 and ECC.8.1 unless additional technical requirements are provided for in the Anchor Restoration Contract or Top Up Restoration Contract. Restoration Contractors who are Non-CUSC Parties and whose Embedded Plant needs to comply with EREC G59 are not included in the scope of the ECC and should refer to the CC.
- ECC.3.2 The above categories of **User** will become bound by the applicable sections of the **ECC** prior to them generating, distributing, storing, supplying or consuming, as the case may be, and references to the various categories should, therefore, be taken as referring to them in that prospective role.
- ECC.3.3 Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement Provisions.

The following provisions apply in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement**.

- The obligations within the ECC that are expressed to be applicable to EU Generators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and HVDC System Owners in respect of Embedded HVDC Systems not subject to a Bilateral Agreement (where the obligations are in each case listed in ECC.3.3.2) shall be read and construed as obligations that the Network Operator within whose System any such Medium Power Station or HVDC System is Embedded must ensure are performed and discharged by the EU Generator or the HVDC Owner. Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement which are located Offshore and which are connected to an Onshore User System will be required to meet the applicable requirements of the Grid Code as though they are an Onshore Generator or Onshore HVDC System Owner connected to an Onshore User System Entry Point.
- The Network Operator within whose System a Medium Power Station not subject to a Bilateral Agreement is Embedded or a HVDC System not subject to a Bilateral Agreement is Embedded must ensure that the following obligations in the ECC are performed and discharged by the EU Generator in respect of each such Embedded Medium Power Station or the HVDC System Owner in the case of an Embedded HVDC System:

ECC.5.1

ECC.5.2.2

ECC.5.3

ECC.6.1.3

ECC.6.1.5 (b)

 ${\tt ECC.6.3.2,\ ECC.6.3.3,\ ECC.6.3.4,\ ECC.6.3.6,\ ECC.6.3.7,\ ECC.6.3.8,\ ECC.6.3.9,}$

ECC.6.3.10, ECC.6.3.12, ECC.6.3.13, ECC.6.3.15, ECC.6.3.16

ECC.6.4.4

ECC.6.5.6 (where required by ECC.6.4.4)

In respect of ECC.6.2.2.2, ECC.6.2.2.3, ECC.6.2.2.5, ECC.6.1.5(a), ECC.6.1.5(b) and ECC.6.3.11 equivalent provisions as co-ordinated and agreed with the **Network Operator** and **EU Generator** or **HVDC System Owner** may be required. Details of any such requirements will be notified to the **Network Operator** in accordance with ECC.3.5.

ECC.3.3.3 In the case of **Embedded Medium Power Station**s not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement** the requirements in:

ECC.6.1.6

ECC.6.3.8

ECC.6.3.12

ECC.6.3.15

ECC.6.3.16

ECC.6.3.17

that would otherwise have been specified in a **Bilateral Agreement** will be notified to the relevant **Network Operator** in writing in accordance with the provisions of the **CUSC** and the **Network Operator** must ensure such requirements are performed and discharged by the **Generator** or the **HVDC System** owner.

- In the case of Offshore Embedded Power Generating Modules connected to an Offshore User's System which directly connects to an Offshore Transmission System, any additional requirements in respect of such Offshore Embedded Power Generating Modules may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Generator.
- In the case of a Generator undertaking OTSDUW connecting to an Onshore Network Operator's System, any additional requirements in respect of such OTSDUW Plant and Apparatus will be specified in the relevant Bilateral Agreement with the EU Generator. For the avoidance of doubt, requirements applicable to EU Generators undertaking OTSDUW and connecting to a Network Operator's User System, shall be consistent with those applicable requirements of Generators undertaking OTSDUW and connecting to a Transmission Interface Point.
- The requirements of this ECC shall apply to EU Code Users in respect of Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) and HVDC Systems.

ECC.4 PROCEDURE

ECC.4.1 The CUSC contains certain provisions relating to the procedure for connection to the National Electricity Transmission System or, in the case of Embedded Power Stations or Embedded HVDC Systems, becoming operational and includes provisions relating to certain conditions to be complied with by EU Code Users prior to and during the course of The Company notifying the User that it has the right to become operational. The procedure for an EU Code User to become connected is set out in the Compliance Processes.

ECC.5 CONNECTION

- The provisions relating to connecting to the **National Electricity Transmission System** (or to a **User's System** in the case of a connection of an **Embedded Large Power Station** or **Embedded Medium Power Stations** or **Embedded HVDC System**) are contained in:
 - (a) the CUSC and/or CUSC Contract (or in the relevant application form or offer for a CUSC Contract):
 - (b) or, in the case of an **Embedded Development**, the relevant **Distribution Code** and/or the **Embedded Development Agreement** for the connection (or in the relevant application form or offer for an **Embedded Development Agreement**),

and include provisions relating to both the submission of information and reports relating to compliance with the relevant European Connection Conditions for that EU Code User, Safety Rules, commissioning programmes, Operation Diagrams and approval to connect (and their equivalents in the case of Embedded Medium Power Stations not subject to a Bilateral Agreement or Embedded HVDC Systems not subject to a Bilateral Agreement). References in the ECC to the "Bilateral Agreement" and/or "Construction Agreement" and/or "Embedded Development Agreement" shall be deemed to include references to the application form or offer therefor.

ECC.5.2 <u>Items For Submission</u>

- Prior to the **Completion Date** (or, where the **EU Generator** is undertaking **OTSDUW**, any later date specified) under the **Bilateral Agreement** and/or **Construction Agreement**, the following is submitted pursuant to the terms of the **Bilateral Agreement** and/or **Construction Agreement**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) copies of all Safety Rules and Local Safety Instructions applicable at Users' Sites which will be used at the Transmission/User interface (which, for the purpose of OC8, must be to The Company's satisfaction regarding the procedures for Isolation and Earthing. The Company will consult the Relevant Transmission Licensee when determining whether the procedures for Isolation and Earthing are satisfactory);
 - (d) information to enable the preparation of the **Site Responsibility Schedules** on the basis of the provisions set out in Appendix 1;
 - (e) an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point** as described in ECC.7:
 - (f) the proposed name of the **User Site** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
 - (g) written confirmation that **Safety Co-ordinators** acting on behalf of the **User** are authorised and competent pursuant to the requirements of **OC8**;
 - (h) Such **RISSP** prefixes pursuant to the requirements of **OC8**. Such **RISSP** prefixes shall be circulated utilising a proforma in accordance with **OC8**;
 - a list of the telephone numbers for Joint System Incidents at which senior management representatives nominated for the purpose can be contacted and confirmation that they are fully authorised to make binding decisions on behalf of the User, pursuant to OC9;
 - a list of managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the User;
 - (k) information to enable the preparation of the **Site Common Drawings** as described in ECC.7:
 - (I) confirmation of access to the **Designated Information Exchange System** as referenced in ECC.6.5.9;
 - (m) for Sites in Scotland and Offshore a list of persons appointed by the User to undertake operational duties on the User's System (including any OTSDUW prior to the OTSUA Transfer Time) and to issue and receive operational messages and instructions in relation to the User's System (including any OTSDUW prior to the OTSUA Transfer Time); and an appointed person or persons responsible for the maintenance and testing of User's Plant and Apparatus.

- (n) a list of contact details for outage and network planning, which shall be updated by the **EU Code User** as needed; and
- (o) a list of email and telephone contact details for the User Site, which shall be updated by the User as needed. The persons specified in the contact details should be able to assist in the sharing of dynamic system behaviour monitoring data as well as supporting any post-Event investigations.
- Prior to the **Completion Date** the following must be submitted to **The Company** by the **Network Operator** in respect of an **Embedded Development**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) the proposed name of the **Embedded Medium Power Station** or **Embedded HVDC System** (which shall be agreed with **The Company** unless it is the same as, or confusingly similar to, the name of other **Transmission Site** or **User Site**);
- Prior to the Completion Date contained within an Offshore Transmission Distribution
 Connection Agreement the following must be submitted to The Company by the Network
 Operator in respect of a proposed new Interface Point within its User System:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- In the case of **OTSDUW Plant and Apparatus** (in addition to items under ECC.5.2.1 in respect of the **Connection Site**), prior to the **Completion Date** (or any later date specified) under the **Construction Agreement** the following must be submitted to **The Company** by the **User** in respect of the proposed new **Connection Point** and **Interface Point**:
 - (a) updated Planning Code data (Standard Planning Data, Detailed Planning Data and OTSDUW Data and Information), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) information to enable preparation of the **Site Responsibility Schedules** at the **Transmission Interface Site** on the basis of the provisions set out in Appendix E1.
 - (d) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- ECC.5.3 (a) Of the items ECC.5.2.1 (c), (e), (g), (h), (k) and (m) need not be supplied in respect of **Embedded Power Stations** or **Embedded HVDC Systems**,
 - (b) item ECC.5.2.1(i) need not be supplied in respect of **Embedded Small Power Stations** and **Embedded Medium Power Stations** or **Embedded HVDC Systems** with a **Registered Capacity** of less than 100MW, and
 - (c) items ECC.5.2.1(d) and (j) are only needed in the case where the **Embedded Power** Station or the **Embedded HVDC System** is within a **Connection Site** with another **User**.

- ECC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA
- ECC.6.1 National Electricity Transmission System Performance Characteristics
- ECC.6.1.1 The Company shall ensure that, subject as provided in the Grid Code, the National Electricity Transmission System complies with the following technical, design and operational criteria in relation to the part of the National Electricity Transmission System at the Connection Site with a User and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point (unless otherwise specified in ECC.6) although in relation to operational criteria The Company may be unable (and will not be required) to comply with this obligation to the extent that there are insufficient Power Stations or User Systems are not available or Users do not comply with The Company's instructions or otherwise do not comply with the Grid Code and each User shall ensure that its Plant and Apparatus complies with the criteria set out in ECC.6.1.5.
- ECC.6.1.2 <u>Grid Frequency Variations</u>
- ECC.6.1.2.1 Grid Frequency Variations
- ECC.6.1.2.1.1 The **Frequency** of the **National Electricity Transmission System** shall be nominally 50Hz and shall be controlled within the limits of 49.5 50.5Hz unless exceptional circumstances prevail, for example but not limited to, situations such as during **System Restoration**.
- ECC.6.1.2.1.2 The **System Frequency** could rise to 52Hz or fall to 47Hz in exceptional circumstances. Design of **User's Plant** and **Apparatus** and **OTSDUW Plant and Apparatus** must enable operation of that **Plant** and **Apparatus** within that range in accordance with the following:

Frequency Range	Requirement .
51.5Hz - 52Hz	Operation for a period of at least 15 minutes is required each
	time the Frequency is above 51.5Hz.
51Hz - 51.5Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is above 51Hz.
49.0Hz - 51Hz	Continuous operation is required
47.5Hz - 49.0Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is below 49.0Hz.
47Hz - 47.5Hz	Operation for a period of at least 20 seconds is required
	each time the Frequency is below 47.5Hz.

- ECC.6.1.2.1.3 For the avoidance of doubt, disconnection, by frequency or speed based relays is not permitted within the frequency range 47.5Hz to 51.5Hz. **EU Generators** should however be aware of the combined voltage and frequency operating ranges as defined in ECC.6.3.12 and ECC.6.3.13.
- ECC.6.1.2.1.4 The Company in co-ordination with the Relevant Transmission Licensee and/or Network Operator and a User may agree on wider variations in frequency or longer minimum operating times to those set out in ECC.6.1.2.1.2 or specific requirements for combined frequency and voltage deviations, for example but not limited to, situations such as during System Restoration. Any such requirements in relation to Power Generating Modules shall be in accordance with ECC.6.3.12 and ECC.6.3.13. A User shall not unreasonably withhold consent to apply wider frequency ranges or longer minimum times for operation taking account of their economic and technical feasibility.
- ECC.6.1.2.2 Grid Frequency variations for HVDC Systems and Remote End HVDC Converter Stations
- ECC.6.1.2.2.1 **HVDC Systems** and **Remote End HVDC Converter Stations** shall be capable of staying connected to the **System** and remaining operable within the frequency ranges and time periods specified in Table ECC.6.1.2.2 below. This requirement shall continue to apply during the **Fault Ride Through** conditions defined in ECC.6.3.15

Frequency Range (Hz)	Time Period for Operation (s)	
47.0 – 47.5Hz	60 seconds	

47.5 – 49.0Hz	90 minutes and 30 seconds
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes and 30 seconds
51.5Hz – 52 Hz	20 minutes

- Table ECC.6.1.2.2 Minimum time periods HVDC Systems and Remote End HVDC Converter Stations shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the National Electricity Transmission System
- ECC.6.1.2.2.2 The Company in coordination with the Relevant Transmission Licensee and a HVDC System Owner may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security, for example but not limited to, situations such as during System Restoration. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the HVDC System Owner shall not unreasonably withhold consent.
- ECC.6.1.2.2.3 Not withstanding the requirements of ECC.6.1.2.2.1, an HVDC System or Remote End HVDC Converter Station shall be capable of automatic disconnection at frequencies specified by The Company and/or Relevant Network Operator.
- ECC.6.1.2.2.4 In the case of **Remote End HVDC Converter Stations** where the **Remote End HVDC Converter Station** is operating at either nominal frequency other than 50Hz or a variable frequency, the requirements defined in ECC6.1.2.2.1 to ECC.6.1.2.2.3 shall apply to the **Remote End HVDC Converter Station** other than in respect of the frequency ranges and time periods.
- ECC.6.1.2.3 Grid Frequency Variations for **DC Connected Power Park Modules**
- ECC.6.1.2.3.1 DC Connected Power Park Modules shall be capable of staying connected to the Remote End DC Converter network at the HVDC Interface Point and operating within the Frequency ranges and time periods specified in Table ECC.6.1.2.3 below. Where a nominal frequency other than 50Hz, or a Frequency variable by design is used as agreed with The Company and the Relevant Transmission Licensee the applicable Frequency ranges and time periods shall be specified in the Bilateral Agreement which shall (where applicable) reflect the requirements in Table ECC.6.1.2.3.

Frequency Range (Hz)	Time Period for Operation (s)
47.0 – 47.5Hz	20 seconds
47.5 – 49.0Hz	90 minutes
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes
51.5Hz – 52 Hz	15 minutes

- Table ECC.6.1.2.3 Minimum time periods a **DC Connected Power Park Module** shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the **System**
- ECC.6.1.2.3.2 The Company in coordination with the Relevant Transmission Licensee and a Generator may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security and to ensure the optimum capability of the DC Connected Power Park Module, for example but not limited to, situations such as during System Restoration. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the EU Generator shall not unreasonably withhold consent.

ECC.6.1.4 Grid Voltage Variations

ECC.6.1.4.1 <u>Grid Voltage Variations for Users excluding DC Connected Power Park Modules and</u> Remote End HVDC Converters

The voltage on part of the National Electricity Transmission System operating at nominal voltages of greater than 300kV at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point, excluding DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within ±5% of the nominal value unless abnormal conditions prevail. The minimum voltage is -10% and the maximum voltage is +10% unless abnormal conditions prevail, for example, but not limited to, situations such as during **System Restoration**, but voltages between +5% and +10% will not last longer than 15 minutes unless abnormal conditions prevail. For nominal voltages of 110kV and up to and including 300kV voltages on the parts of the National Electricity Transmission System at each Connection Point (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits ±10% of the nominal value unless abnormal conditions prevail for example, but not limited to, situations such as during System Restoration. At nominal System voltages below 110kV the voltage of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point), excluding Connection Sites for DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within the limits ±6% of the nominal value unless abnormal conditions prevail for example but not limited to, situations such as during System Restoration. Under fault conditions, the voltage may collapse transiently to zero at the point of fault until the fault is cleared. The normal operating ranges of the National Electricity Transmission System are summarised below:

National Electricity Transmission System	Normal Operating Range		Time period for Operation	
Nominal Voltage	Voltage	Pu (1pu relates to	•	
	(percentage of	the Nominal		
	Nominal Voltage)	Voltage)		
Greater than 300kV	V -10% to +5%	0.90pu- 1.05pu	Unlimited	
	V +5% to +10%	1.05pu- 1.10pu	15 minutes	
110kV up to 300kV	V ±10%	0.90- 1.10pu	Unlimited	
Below 110kV	±6%	0.94pu- 1.06pu	Unlimited	

The Company and a **User** may agree greater variations or longer minimum time periods of operation in voltage to those set out above in relation to a particular **Connection Site**, and insofar as a greater variation is agreed, the relevant figure set out above shall, in relation to that **User** at the particular **Connection Site**, be replaced by the figure agreed.

ECC.6.1.4.2 Grid Voltage Variations for all **DC Connected Power Park Modules**

ECC.6.1.4.2.1 All **DC Connected Power Park Modules** shall be capable of staying connected to the **Remote End HVDC Converter Station** at the **HVDC Interface Point** and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.2(a) and ECC.6.1.4.2(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)	
0.85pu — 0.9pu	60 minutes	
0.9pu — 1.1pu	Unlimited	
1.1pu – 1.15pu	15 minutes	

Table ECC.6.1.4.2(a) – Minimum time periods for which **DC Connected Power Park Modules** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

Voltage Range (pu)	Time Period for Operation (s)	
0.85pu – 0.9pu	60 minutes	
0.9pu – 1.05pu	Unlimited	
1.05pu – 1.15pu	15 minutes	

- Table ECC.6.1.4.2(b) Minimum time periods for which **DC Connected Power Park Modules** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.
- ECC.6.1.4.2.2 The Company and a EU Generator in respect of a DC Connected Power Park Module may agree greater voltage ranges or longer minimum operating times. If greater voltage ranges or longer minimum times for operation are economically and technically feasible, the EU Generator shall not unreasonably withhold any agreement.
- ECC.6.1.4.2.3 For DC Connected Power Park Modules which have an HVDC Interface Point to the Remote End HVDC Converter Station, The Company in coordination with the Relevant Transmission Licensee may specify voltage limits at the HVDC Interface Point at which the DC Connected Power Park Module is capable of automatic disconnection.
- ECC.6.1.4.2.4 For **HVDC** Interface Points which fall outside the scope of ECC.6.1.4.2.1, ECC.6.1.4.2.2 and ECC.6.1.4.2.3, **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.2.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC Interface Point** is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.2(a) and Table ECC.6.1.4.2(b)
- ECC.6.1.4.3 Grid Voltage Variations for all Remote End HVDC Converters
- ECC.6.1.4.3.1 All **Remote End HVDC Converter Stations** shall be capable of staying connected to the **HVDC Interface Point** and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.3(a) and ECC.6.1.4.3(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)	
0.85pu – 0.9pu	60 minutes	
0.9pu – 1.1pu	Unlimited	
1.1pu – 1.15pu	15 minutes	

Table ECC.6.1.4.3(a) – Minimum time periods for which a **Remote End HVDC Converter** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

Voltage Range (pu)	Time Period for Operation (s)	
0.85pu – 0.9pu	60 minutes	
0.9pu – 1.05pu	Unlimited	

1.05pu – 1.15pu	15 minutes

- Table ECC.6.1.4.3(b) Minimum time periods for which a Remote End HVDC Converter shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.
- ECC.6.1.4.3.2 **The Company** and a **HVDC System Owner** may agree greater voltage ranges or longer minimum operating times which shall be in accordance with the requirements of ECC.6.1.4.2.
- ECC.6.1.4.3.4 For **HVDC Interface Points** which fall outside the scope of ECC.6.1.4.3.1 **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.3.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC**Interface Point is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.3(a) and Table ECC.6.1.4.3(b)

Voltage Waveform Quality

All Plant and Apparatus connected to the National Electricity Transmission System, and that part of the National Electricity Transmission System at each Connection Site or, in the case of OTSDUW Plant and Apparatus, at each Interface Point, should be capable of withstanding the following distortions of the voltage waveform in respect of harmonic content and phase unbalance:

(a) Harmonic Content

The Electromagnetic Compatibility Levels for harmonic distortion on the Onshore Transmission System from all sources under both Planned Outage and fault outage conditions, (unless abnormal conditions prevail) shall comply with Engineering Recommendation G5. The Electromagnetic Compatibility Levels for harmonic distortion on an Offshore Transmission System will be defined in relevant Bilateral Agreements.

Engineering Recommendation G5 contains planning criteria which The Company will apply to the connection of non-linear Load to the National Electricity Transmission System, which may result in harmonic emission limits being specified for these Loads in the relevant Bilateral Agreement. The application of the planning criteria will take into account the position of existing GB Code User's and EU Code Users' Plant and Apparatus (and OTSDUW Plant and Apparatus) in relation to harmonic emissions. EU Code Users must ensure that connection of distorting loads to their User Systems do not cause any harmonic emission limits specified in the Bilateral Agreement, or where no such limits are specified, the relevant planning levels specified in Engineering Recommendation G5 to be exceeded.

(b) Phase Unbalance

Under Planned Outage conditions, the weekly 95 percentile of Phase (Voltage) Unbalance, calculated in accordance with IEC 61000-4-30 and IEC 61000-3-13, on the National Electricity Transmission System for voltages above 150kV should remain, in England and Wales, below 1.5%, and in Scotland, below 2%, and for voltages of 150kV and below, across GB below 2%, unless abnormal conditions prevail and Offshore (or in the case of OTSDUW, OTSDUW Plant and Apparatus) will be defined in relevant Bilateral Agreements.

The Phase Unbalance is calculated from the ratio of root mean square (rms) of negative phase sequence voltage to rms of positive phase sequence voltage, based on 10-minute average values, in accordance with IEC 61000-4-30.

Across GB, under the **Planned Outage** conditions stated in ECC.6.1.5(b) infrequent short duration peaks with a maximum value of 2% are permitted for **Phase (Voltage) Unbalance**, for voltages above 150kV, subject to the prior agreement of **The Company** under the **Bilateral Agreement** and in relation to **OTSDUW**, the **Construction Agreement**. **The Company** will only agree following a specific assessment of the impact of these levels on **Transmission Apparatus** and other **Users Apparatus** with which it is satisfied.

Voltage Fluctuations

- ECC.6.1.7 Voltage changes at a **Point of Common Coupling** on the **Onshore Transmission System** shall not exceed:
 - (a) The limits specified in Table ECC.6.1.7(a) with the stated frequency of occurrence, where:

(i)

$$\% \Delta V_{steadystate} = \left| 100 \text{ x } \frac{\Delta V_{steadystate}}{Vn} \right| \qquad \text{and}$$

$$\% \Delta V_{max} = 100 \text{ x } \frac{\Delta V_{max}}{V_n} \text{ ;}$$

- (ii) V_n is the nominal system voltage;
- (iii) V_{steadystate} is the voltage at the end of a period of 1 s during which the rate of change of system voltage over time is ≤ 0.5%;
- (iv) $\Delta V_{\text{steadystate}}$ is the difference in voltage between the initial steady state voltage prior to the RVC (V₀) and the final steady state voltage after the RVC (V₀);
- (v) ΔV_{max} is the absolute change in the system voltage relative to the initial steady state system voltage (V₀);
- (vi) All voltages are the r.m.s. of the voltage measured over one cycle refreshed every half a cycle as per BS EN 61000-4-30; and
- (vii) The applications in the 'Example Applicability' column are examples only and are not definitive.

Cat- egory	Title	Maximum number of occurrence	Limits %ΔV _{max} & %ΔV _{steadystate}	Example Applicability
1	Frequent events	(see NOTE 1)	As per Figure ECC.6.1.7 (1)	Any single or repetitive RVC that falls inside Figure ECC.6.1.7 (1)
2	Infrequent events	4 events in 1 calendar month (see NOTE 2)	As per Figure ECC.6.1.7 (2) $ \% \Delta V_{\text{steadystate}} \leq 3\% $ For decrease in voltage: $ \% \Delta V_{\text{max}} \leq 10\% $ (see NOTE 3) For increase in voltage: $ \% \Delta V_{\text{max}} \leq 6\% $ (see NOTE 4)	Infrequent motor starting, transformer energisation, re-energisation (see NOTE 7)

3	Very infrequent events	1 event in 3 calendar months (see NOTE 2)	As per Figure ECC.6.1.7 (3) $ \%\Delta V_{\text{steadystate}} \le 3\%$ For decrease in voltage: $ \%\Delta V_{\text{max}} \le 12\%$ (see NOTE 5) For increase in voltage: $ \%\Delta V_{\text{max}} \le 6\%$ (see NOTE 6)	Commissioning, maintenance & post fault switching (see NOTE 7)
---	------------------------------	---	--	--

- NOTE 1: $\pm 6\%$ is permissible for 100 ms reduced to $\pm 3\%$ thereafter as per Figure ECC.6.1.7 (1) . If the profile of repetitive voltage change(s) falls within the envelope given in Figure ECC.6.1.7 (1) , the assessment of such voltage change(s) shall be undertaken according to the recommendations for assessment of flicker <u>and</u> shall conform to the planning levels provided for flicker. If any part of the voltage change(s) falls outside the envelope given in Figure ECC.6.1.7(1), the assessment of such voltage changes, repetitive or not, shall be done according to the guidance and limits for RVCs.
- NOTE 2: No more than 1 event is permitted per day, consisting of up to 4 RVCs, each separated by at least 10 minutes with all switching completed within a two-hour window.
- NOTE 3: -10% is permissible for 100 ms reduced to -6% until 2 s then reduced to -3% thereafter as per Figure ECC.6.1.7 (2).
- NOTE 4: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (2).
- NOTE 5: -12% is permissible for 100 ms reduced to -10% until 2 s then reduced to -3% thereafter as per Figure ECC.6.1.7 (3).
- NOTE 6: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (3).
- NOTE 7: These are examples only. Customers may opt to conform to the limits of another category providing the frequency of occurrence is not expected to exceed the 'Maximum number of occurrence' for the chosen category.

Table ECC.6.1.7 (a) - Planning levels for RVC

- (b) The voltage change limit is the absolute maximum allowed of either the phase-to-earth voltage change or the phase-to-phase voltage change, whichever is the highest. The limits do not apply to single phasor equivalent voltages, e.g. positive phase sequence (PPS) voltages. For high impedance earthed systems, the maximum phase-to-phase, i.e. line voltage, should be used for assessment.
- (c) The RVCs in Category 2 and 3 should not exceed the limits depicted in the time dependent characteristic shown in Figure ECC.6.1.7 (2) and Figure ECC.6.1.7 (3) respectively. These limits do not apply to: 1) fault clearance operations; or 2) immediate operations in response to fault conditions; or 3) operations relating to post fault system restoration (for the avoidance of doubt this third exception pertains to a fault that is external to the **Users** plant and apparatus).
- (d) Any RVCs permitted in Category 2 and Category 3 should be at least 10 minutes apart.
- (e) The value of V_{steadystate} should be established immediately prior to the start of a RVC. Following a RVC, the voltage should remain within the relevant envelope, as shown in Figures ECC.6.1.7 (1), ECC.6.1.7 (2), ECC.6.1.7 (3), until a V_{steadystate} condition has been satisfied.

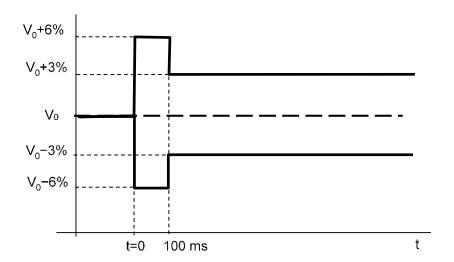


Figure ECC.6.1.7 (1) — Voltage characteristic for frequent events

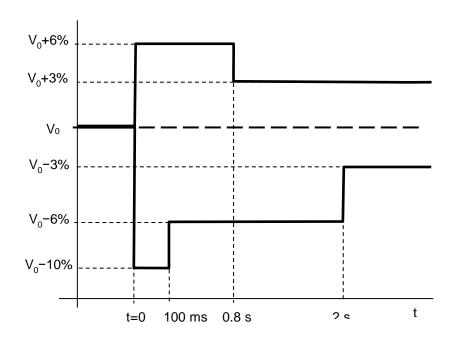


Figure ECC.6.1.7 (2) — Voltage characteristic for infrequent events

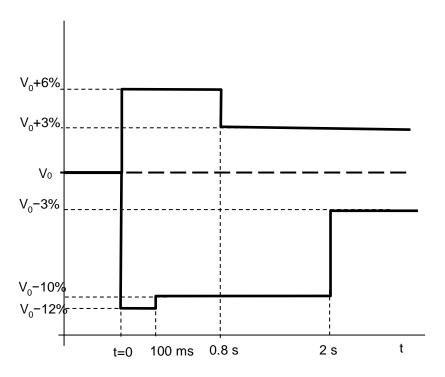


Figure ECC.6.1.7 (3) — Voltage characteristic for very infrequent events

- (f) The voltage change between two steady state voltage conditions should not exceed 3%. (The limit is based on 3% of the nominal voltage of the system (V_n) as measured at the PCC. The step voltage change as measured at the customer's supply terminals or equipment terminals could be greater. For example: The step voltage change limit stated in BS EN 61000-3-3 and BS EN 61000-3-11 is 3.3% when measured at the equipment terminals.)
- (g) The limits apply to voltage changes measured at the Point of Common Coupling.
- (h) Category 3 events that are planned should be notified to the Company in advance.
- (i) For connections where voltage changes would constitute a risk to the National Electricity Transmission System or, in The Company's view, the System of any GB Code User, Bilateral Agreements may include provision for The Company to reasonably limit the number of voltage changes in Category 2 or 3 to a lower number than specified in Table ECC.6.1.7(a) to ensure that the total number of voltage changes at the Point of Common Coupling across multiple Users remains within the limits of Table ECC.6.1.7(a).
- (j) The planning levels applicable to Flicker Severity Short Term (Pst) and Flicker Severity Long Term (Plt) are set out in Table ECC.6.1.7(b).

	Planning level	
Supply system Nominal voltage	Flicker Severity Short Term (Pst)	Flicker Severity Long Term (Plt)
Up to and including 33 kV	0.9	0.7
66kV and greater	0.8	0.6

NOTE 1: The magnitude of Pst is linear with respect to the magnitude of the voltage changes giving rise to it.

NOTE 2: Extreme caution is advised in allowing any excursions of Pst and Plt above the planning level.

Table ECC.6.7.1(b) — Planning levels for flicker

The values and figures referred to in this paragraph ECC.6.1.7 are derived from Engineering Recommendation P28 Issue 2.

Voltage fluctuations at a **Point of Common Coupling** with a fluctuating **Load** directly connected to an **Offshore Transmission System** (or in the case of **OTSDUW**, **OTSDUW Plant and Apparatus**) shall not exceed the limits set out in the **Bilateral Agreement**.

Sub-Synchronous Resonance and Sub-Synchronous Torsional Interaction (SSTI)

- ECC.6.1.9 The Company shall ensure that Users' Plant and Apparatus will not be subject to unacceptable Sub-Synchronous Oscillation conditions as specified in the relevant License Standards.
- The Company shall ensure where necessary, and in consultation with Relevant Transmission Licensees where required, that any relevant site specific conditions applicable at a User's Connection Site, including a description of the Sub-Synchronous Oscillation conditions considered in the application of the relevant License Standards, are set out in the User's Bilateral Agreement.
- ECC.6.2 Plant and Apparatus relating to Connection Sites and Interface Points and HVDC Interface
 Points

The following requirements apply to Plant and Apparatus relating to the Connection Point and OTSDUW Plant and Apparatus relating to the Interface Point (until the OTSUA Transfer Time), HVDC Interface Points relating to Remote End HVDC Converters and Connection Points which (except as otherwise provided in the relevant paragraph) each EU Code User must ensure are complied with in relation to its Plant and Apparatus and which in the case of ECC.6.2.2.2.2, ECC.6.2.3.1.1 and ECC.6.2.1.1(b) only, The Company must ensure are complied with in relation to Transmission Plant and Apparatus, as provided in those paragraphs.

ECC.6.2.1 General Requirements

- ECC.6.2.1.1 (a) The design of connections between the **National Electricity Transmission System** and:
 - (i) any Power Generating Module Generating Unit (other than a CCGT Unit or Power Park Unit) HVDC Equipment, Power Park Module or CCGT Module, or
 - (ii) any Network Operator's User System, or
 - (iii) Non-Embedded Customers equipment;

will be consistent with the Licence Standards.

In the case of **OTSDUW**, the design of the **OTSUA's** connections at the **Interface Point** and **Connection Point** will be consistent with **Licence Standards**.

- (b) The National Electricity Transmission System (and any OTSDUW Plant and Apparatus) at nominal System voltages of 132kV and above is/shall be designed to be earthed with an Earth Fault Factor of, in England and Wales or Offshore, below 1.4 and in Scotland, below 1.5. Under fault conditions the rated Frequency component of voltage could fall transiently to zero on one or more phases or, in England and Wales, rise to 140% phase-to-earth voltage, or in Scotland, rise to 150% phase-to-earth voltage. The voltage rise would last only for the time that the fault conditions exist. The fault conditions referred to here are those existing when the type of fault is single or two phase-to-earth.
- (c) For connections to the National Electricity Transmission System at nominal System voltages of below 132kV the earthing requirements and voltage rise conditions will be advised by The Company as soon as practicable prior to connection and in the case of OTSDUW Plant and Apparatus shall be advised to The Company by the EU Code User.

ECC.6.2.1.2 <u>Substation Plant and Apparatus</u>

- (a) The following provisions shall apply to all Plant and Apparatus which is connected at the voltage of the Connection Point (and OTSDUW Plant and Apparatus at the Interface Point) and which is contained in equipment bays that are within the Transmission busbar Protection zone at the Connection Point. This includes circuit breakers, switch disconnectors, disconnectors, Earthing Devices, power transformers, voltage transformers, reactors, current transformers, surge arresters, bushings, neutral equipment, capacitors, line traps, coupling devices, external insulation and insulation coordination devices. Where necessary, this is as more precisely defined in the Bilateral Agreement.
 - (i) Plant and/or Apparatus in respect of EU Code Users connecting to a new Connection Point (including OTSDUW Plant and Apparatus at the Interface Point)

Each item of such Plant and/or Apparatus installed in relation to a new Connection Point (or OTSDUW Plant and Apparatus at the Interface Point or Remote End HVDC Converter Station at the HVDC Interface Point) shall comply with the relevant Technical Specifications and any further requirements identified by The Company, acting reasonably, to reflect the options to be followed within the Technical Specifications and/or to complement if necessary the Technical Specifications so as to enable The Company to comply with its obligations in relation to the National Electricity Transmission System or the Relevant Transmission Licensee to comply with its obligations in relation to its Transmission System. This information, including the application dates of the relevant Technical Specifications, will be as specified in the Bilateral Agreement.

(ii) <u>EU Code User's Plant and/or Apparatus connecting to an existing Connection Point</u> (including OTSDUW Plant and Apparatus at the Interface Point)

Each new additional and/or replacement item of such Plant and/or Apparatus installed in relation to a change to an existing Connection Point (or OTSDUW Plant and Apparatus at the Interface Point and Connection Point or Remote End HVDC Converter Stations at the HVDC Interface Point)—shall comply with the standards/specifications applicable when the change was designed, or such other standards/specifications as necessary to ensure that the item of Plant and/or Apparatus is reasonably fit for its intended purpose having due regard to the obligations of The Company, the relevant User the Relevant Transmission Licensee under their respective Licences. Where appropriate this information, including the application dates of the relevant standards/specifications, will be as specified in the varied Bilateral Agreement.

(iii) Used Plant and/or Apparatus being moved, re-used or modified

If, after its installation, any such item of **Plant** and/or **Apparatus** is subsequently:

moved to a new location; or

used for a different purpose; or

otherwise modified;

then the standards/specifications as described in (i) or (ii) above as applicable will apply as appropriate to such **Plant** and/or **Apparatus**, which must be reasonably fit for its intended purpose having due regard to the obligations of **The Company**, the relevant **User** and the **Relevant Transmission Licensee** under their respective **Licences**.

- (b) The Company shall at all times maintain a list of those Technical Specifications and additional requirements which might be applicable under this ECC.6.2.1.2 and which may be referenced by The Company in the Bilateral Agreement. The Company shall provide a copy of the list upon request to any EU Code User. The Company shall also provide a copy of the list to any EU Code User upon receipt of an application form for a Bilateral Agreement for a new Connection Point.
- (c) Where the EU Code User provides The Company with information and/or test reports in respect of Plant and/or Apparatus which the EU Code User reasonably believes demonstrate the compliance of such items with the provisions of a Technical Specification then The Company shall promptly and without unreasonable delay give due and proper consideration to such information.
- (d) Plant and Apparatus shall be designed, manufactured and tested in premises with an accredited certificate in accordance with the quality assurance requirements of the relevant standard in the BS EN ISO 9000 series (or equivalent as reasonably approved by The Company) or in respect of test premises which do not include a manufacturing facility premises with an accredited certificate in accordance with BS EN 45001.
- (e) Each connection between a **User** and the **National Electricity Transmission System** must be controlled by a circuit-breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the point of connection. The **Electricity Ten Year Statement** gives values of short circuit current and the rating of **Transmission** circuit breakers at existing and committed **Connection Points** for future years.
- (f) Each connection between a Generator undertaking OTSDUW or an Onshore Transmission Licensee, must be controlled by a circuit breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the Transmission Interface Point. The Electricity Ten Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Transmission Interface Points for future years.
- ECC.6.2.2 Requirements at Connection Points or, in the case of OTSDUW at Interface Points that relate to Generators or OTSDUW Plant and Apparatus
- ECC.6.2.2.1 Not Used.
- ECC.6.2.2.2 <u>Power Generating Module, OTSDUW Plant and Apparatus, HVDC Equipment and Power Station Protection Arrangements</u>
- ECC.6.2.2.2.1 Minimum Requirements
- ECC.6.2.2.2.1.1 Protection of Power Generating Modules (other than Power Park Units), HVDC Equipment, OTSDUW Plant and Apparatus and their connections to the National Electricity Transmission System shall meet the requirements given below. These are necessary to reduce the impact on the National Electricity Transmission System of faults on OTSDUW Plant and Apparatus circuits or circuits owned by Generators (including DC Connected Power Park Modules) or HVDC System Owners.
- ECC.6.2.2.1.2 Restoration Contractors shall, if required by a Restoration Plan, have the ability to switch:
 - a) From the normal to the alternative **Protection** settings on their **Plant** and **Apparatus** and:-
 - b) From the alternative to the normal **Protection** settings whilst their **Plant** remains in service.

Any alternative **Protection** settings shall be included in the **Restoration Plan**. Normal and alternative **Protection** settings shall be agreed between **The Company** and/or **Relevant Transmission Licensee** and/or **Network Operator** as part of developing a **Restoration Plan**.

ECC.6.2.2.2. Fault Clearance Times

- (a) The required fault clearance time for faults on the Generator's (including DC Connected Power Park Modules) or HVDC System Owner's equipment directly connected to the National Electricity Transmission System or OTSDUW Plant and Apparatus and for faults on the National Electricity Transmission System directly connected to the EU Generator (including DC Connected Power Park Modules) or HVDC System Owner's equipment or OTSDUW Plant and Apparatus, from fault inception to the circuit breaker arc extinction, shall be set out in the Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified in (i), (ii) and (iii) below:
 - (i) 80ms for connections operating at a nominal voltage of greater than 300kV
 - (ii) 100ms for connections operating at a nominal voltage of greater than 132kV and up to 300kV
 - (iii) 120ms for connections operating at a nominal voltage of 132kV and below

but this shall not prevent the **User** or **The Company** or the **Relevant Transmission Licensee** or the **EU Generator** (including in respect of **OTSDUW Plant and Apparatus** and **DC Connected Power Park Modules**) from selecting a shorter fault clearance time on their own **Plant** and **Apparatus** provided **Discrimination** is achieved.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **EU Generator** or **HVDC System Owner's** equipment or **OTSDUW Plant and Apparatus** may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements, in **The Company's** view, permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault, must be less than 2%.

(b) In the event that the required fault clearance time is not met as a result of failure to operate on the Main Protection System(s) provided, the Generators or HVDC System Owners or Generators in the case of OTSDUW Plant and Apparatus shall, except as specified below provide Independent Back-Up Protection. The Relevant Transmission Licensee will also provide Back-Up Protection and the Relevant Transmission Licensee's and the User's Back-Up Protections will be co-ordinated so as to provide Discrimination.

On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System operating at a nominal voltage of greater than 132kV and where two Independent Main Protections are provided to clear faults on the HV Connections within the required fault clearance time, the Back-Up Protection provided by EU Generators (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and HVDC System Owners shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections. Where two Independent Main Protections are installed the Back-Up Protection may be integrated into one (or both) of the Independent Main Protection relays.

On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System at 132 kV and below and where only one Main Protection is provided to clear faults on the HV Connections within the required fault clearance time, the Independent Back-Up Protection provided by the Generator (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and the HVDC System Owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections.

A Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus) with Back-Up Protection or Independent Back-Up Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at a nominal voltage of greater than 132kV or of a fault cleared by Back-Up Protection where the EU Generator (including in the case of OTSDUW Plant and Apparatus or DC Connected Power Park Module) or HVDC System is connected at 132kV and below. This will permit Discrimination between the Generator in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules or HVDC System Owners' Back-Up Protection or Independent Back-Up Protection and the Back-Up Protection provided on the National Electricity Transmission System and other Users' Systems.

- (c) When the Power Generating Module (other than Power Park Units), or the HVDC Equipment or OTSDUW Plant and Apparatus is connected to the National Electricity Transmission System operating at a nominal voltage of greater than 132kV, and in Scotland and Offshore also at 132kV, and a circuit breaker is provided by the Generator (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or the HVDC System owner, or the Relevant Transmission Licensee, as the case may be, to interrupt fault current interchange with the National Electricity Transmission System, or Generator's System, or HVDC System Owner's System, as the case may be, circuit breaker fail Protection shall be provided by the Generator (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or HVDC System-Owner, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker. In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty item of **Apparatus**.

ECC.6.2.2.3 Equipment including **Protection** equipment to be provided

The Relevant Transmission Licensee shall specify the Protection schemes and settings necessary to protect the National Electricity Transmission System, taking into account the characteristics of the Power Generating Module or HVDC Equipment.

The protection schemes needed for the **Power Generating Module** or **HVDC Equipment** and the **National Electricity Transmission System** as well as the settings relevant to the **Power Generating Module** and/or **HVDC Equipment** shall be coordinated and agreed between **The Company** and the **EU Generator** or **HVDC System Owner**. The agreed **Protection** schemes and settings will be specified in the **Bilateral Agreement**.

The protection schemes and settings for internal electrical faults must not prevent the **Power Generating Module** or **HVDC Equipment** from satisfying the requirements of the Grid Code although **EU Generators** should be aware of the requirements of ECC.6.3.13.1.;

electrical Protection of the Power Generating Module or HVDC Equipment shall take precedence over operational controls, taking into account the security of the National Electricity Transmission System and the health and safety of personnel, as well as mitigating any damage to the Power Generating Module or HVDC Equipment.

ECC.6.2.2.3.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**. In this **ECC** the term "interconnecting connections" means the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the **OTSDUW Plant and Apparatus** of the circuit breaker to the **Transmission Interface Point**.

ECC.6.2.2.3.2 Circuit-breaker fail Protection

The EU Generator or HVDC System Owner will install circuit breaker fail Protection equipment in accordance with the requirements of the Bilateral Agreement. The EU Generator or HVDC System Owner will also provide a back-trip signal in the event of loss of air from its pressurised head circuit breakers, during the Power Generating Module (other than a CCGT Unit or Power Park Unit) or HVDC Equipment run-up sequence, where these circuit breakers are installed.

ECC.6.2.2.3.3 Loss of Excitation

The **EU Generator** must provide **Protection** to detect loss of excitation in respect of each of its **Generating Units** within a **Synchronous Power Generating Module** to initiate a **Generating Unit** trip.

ECC.6.2.2.3.4 Pole-Slipping Protection

Where, in **The Company's** reasonable opinion, **System** requirements dictate, **The Company** will specify in the **Bilateral Agreement** a requirement for **EU Generators** to fit pole-slipping **Protection** on their **Generating Units** within each **Synchronous Power Generating Module**.

ECC.6.2.2.3.5 Signals for Tariff Metering

EU Generators and **HVDC System Owners** will install current and voltage transformers supplying all tariff meters at a voltage to be specified in, and in accordance with, the **Bilateral Agreement**.

ECC.6.2.2.3.6 Commissioning of Protection Systems

No **EU Generator** or **HVDC System Owner** equipment shall be energised until the **Protection** settings have been finalised. The **EU Generator** or **HVDC System Owner** shall agree with **The Company** (in coordination with the **Relevant Transmission Licensee**) and carry out a combined commissioning programme for the **Protection** systems, and generally, to a minimum standard as specified in the **Bilateral Agreement**.

ECC.6.2.2.4 Work on Protection Equipment

No busbar **Protection**, mesh corner **Protection**, circuit-breaker fail **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Power Generating Module**, **HVDC Equipment** itself) may be worked upon or altered by the **EU Generator** or **HVDC System Owner** personnel in the absence of a representative of the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

ECC.6.2.2.5 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** and in relation to **OTSDUW Plant and Apparatus**, across the **Interface Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

ECC.6.2.2.6 Changes to **Protection** Schemes and **HVDC System** Control Modes

- ECC.6.2.2.6.1 Any subsequent alterations to the protection settings (whether by The Company, the Relevant Transmission Licensee, the EU Generator, or the HVDC System Owner) shall be agreed between The Company (in co-ordination with the Relevant Transmission Licensee) and the EU Generator or HVDC System Owner in accordance with the Grid Code (ECC.6.2.2.5). No alterations are to be made to any protection schemes unless agreement has been reached between The Company, the Relevant Transmission Licensee, the EU Generator or HVDC System Owner.
- ECC.6.2.2.6.2 The parameters of different control modes of the **HVDC System** shall be able to be changed in the **HVDC Converter Station**, if required by **The Company** in coordination with the **Relevant Transmission Licensee** and in accordance with ECC.6.2.2.6.4.
- ECC.6.2.2.6.3 Any change to the schemes or settings of parameters of the different control modes and protection of the HVDC System including the procedure shall be agreed with The Company in coordination with the Relevant Transmission Licensee and the HVDC System Owner.
- ECC.6.2.2.6.4 The control modes and associated set points shall be capable of being changed remotely, as specified by **The Company** in coordination with the **Relevant Transmission Licensee**.
- ECC.6.2.2.7 Control Schemes and Settings
- ECC.6.2.2.7.1 The schemes and settings of the different control devices on the Power Generating Module and HVDC Equipment that are necessary for Transmission System stability and for taking emergency action shall be agreed with The Company in coordination with the Relevant Transmission Licensee and the EU Generator or HVDC System Owner. Restoration Contractors shall have the ability to switch from alternative control schemes and settings on their Plant and Apparatus whilst remaining in service if they are required to satisfy their obligations in a Restoration Plan. Changes to any control schemes and settings shall be agreed between The Company and/or Relevant Transmission Licensee and/or Network Operator as part of developing a Restoration Plan which shall be in accordance with the requirements of ECC.6.2.2.6.
- ECC.6.2.2.7.2 Subject to the requirements of ECC.6.2.2.7.1 any changes to the schemes and settings, defined in ECC.6.2.2.7.1, of the different control devices of the **Power Generating Module** or **Restoration Contractor** or **HVDC Equipment** shall be coordinated and agreed between the **Relevant Transmission Licensee**, the **EU Generator**, **Restoration Contractor** and **HVDC System Owner**.
- ECC.6.2.2.8 Ranking of **Protection** and Control
- ECC.6.2.2.8.1 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **EU Generators Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest):
 - (i) The interface between the **National Electricity Transmission System** and the **Power Generating Module** or **HVDC Equipment Protection** equipment;
 - (ii) frequency control (active power adjustment);
 - (iii) power restriction; and
 - (iv) power gradient constraint;
- ECC.6.2.2.8.2 A control scheme, specified by the **HVDC System Owner** consisting of different control modes, including the settings of the specific parameters, shall be coordinated and agreed between **The Company** in coordination with the **Relevant Transmission Licensee** and the **HVDC System Owner**. These details would be specified in the **Bilateral Agreement**.
- ECC.6.2.2.8.3 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **HVDC System Owners Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest)
 - (i) The interface between the **National Electricity Transmission System** and **HVDC System Protection** equipment;
 - (ii) Active Power control for emergency assistance

- (iii) automatic remedial actions as specified in ECC.6.3.6.1.2.5
- (iv) **Limited Frequency Sensitive Mode** (LFSM) of operation;
- (v) Frequency Sensitive Mode of operation and Frequency control; and
- (vi) power gradient constraint.

ECC.6.2.2.9 Synchronising

- ECC.6.2.2.9.1 For any **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module**, synchronisation shall be performed by the **EU Generator** only after instruction by **The Company** in accordance with the requirements of BC.2.5.2.
- ECC.6.2.2.9.2 Each **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module** shall be equipped with the necessary synchronisation facilities. Synchronisation shall be possible within the range of frequencies specified in ECC.6.1.2.
- ECC.6.2.2.9.3 The requirements for synchronising equipment shall be specified in accordance with the requirements in the **Electrical Standards** listed in the annex to the **General Conditions**. The synchronisation settings shall include the following elements below. Any variation to these requirements shall be pursuant to the terms of the **Bilateral Agreement**.
 - (a) voltage
 - (b) Frequency
 - (c) phase angle range
 - (d) phase sequence
 - (e) deviation of voltage and Frequency
- ECC.6.2.2.9.4 HVDC Equipment shall be required to satisfy the requirements of ECC.6.2.2.9.1 ECC.6.2.2.9.3. In addition, unless otherwise specified by The Company, during the synchronisation of a DC Connected Power Park Module to the National Electricity Transmission System, any HVDC Equipment shall have the capability to limit any steady state voltage changes to the limits specified within ECC.6.1.7 or ECC.6.1.8 (as applicable) which shall not exceed 5% of the pre-synchronisation voltage. The Company in coordination with the Relevant Transmission Licensee shall specify any additional requirements for the maximum magnitude, duration and measurement of the voltage transients over and above those defined in ECC.6.1.7 and ECC.6.1.8 in the Bilateral Agreement.
- ECC.6.2.2.9.5 **EU Generators** in respect of **DC Connected Power Park Modules** shall also provide output synchronisation signals specified by **The Company** in co-ordination with the **Relevant Transmission Licensee**.
- ECC.6.2.2.9.6 In addition to the requirements of ECC.6.2.2.9.1 to ECC.6.2.2.9.5, **EU Generators** and **HVDC System Owners** should also be aware of the requirements of ECC.6.5.10 relating to busbar voltage
- ECC.6.2.2.9.10 HVDC Parameters and Settings
- The parameters and settings of the main control functions of an HVDC System shall be agreed between the HVDC System owner and The Company, in coordination with the Relevant Transmission Licensee. The parameters and settings shall be implemented within such a control hierarchy that makes their modification possible if necessary. Those main control functions are at least:
 - (b) Frequency Sensitive Modes (FSM, LFSM-O, LFSM-U);
 - (c) Frequency control, if applicable;
 - (d) Reactive Power control mode, if applicable;

- (e) power oscillation damping capability;
- (f) subsynchronous torsional interaction damping capability,.

ECC.6.2.2.11 Automatic Reconnection

ECC.6.2.2.11.1 EU Generators in respect of Type A, Type B, Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) which have signed a CUSC Contract with The Company are not permitted to automatically reconnect to the Total System without instruction from The Company. The Company will issue instructions for reconnection or re-synchronisation in accordance with the requirements of BC2.5.2. Where synchronising is permitted in accordance with BC2.5.2, the voltage and frequency at the Grid Entry Point or User System Entry Point shall be within the limits defined in ECC.6.1.2 and ECC.6.1.4 and the ramp rate limits pursuant to BC1.A.1.1. For the avoidance of doubt this requirement does not apply to EU Generators who are not required to satisfy the requirements of the Balancing Codes.

ECC.6.2.2.12 Automatic Disconnection

- ECC.6.2.2.12.1 No **Power Generating Module** or **HVDC Equipment** shall disconnect within the frequency range or voltage range defined in ECC.6.1.2 and ECC.6.1.4.
- ECC.6.2.2.13 <u>Special Provisions relating to Power Generating Modules embedded within Industrial Sites</u> which supply electricity as a bi-product of their industrial process
- ECC.6.2.2.13.1 **Generators** in respect of **Power Generating Modules** which form part of an industrial network, where the **Power Generating Module** is used to supply critical loads within the industrial process shall be permitted to operate isolated from the **Total System** if agreed with **The Company** in the **Bilateral Agreement**.
- ECC.6.2.2.13.2 Except for the requirements of ECC.6.3.3 and ECC.6.3.7.1, **Power Generating Modules** which are embedded within industrial sites are not required to satisfy the requirements of ECC.6.3.6.2.1 and ECC.6.3.9. In this case this exception would only apply to **Power Generating Modules** on industrial sites used for combined heat and power production which are embedded in the network of an industrial site where all the following criteria are met.
 - (a) The primary purpose of these sites is to produce heat for production processes of the industrial site concerned,
 - (b) Heat and power generation is inextricably interlinked, that is to say any change to heat generation results inadvertently in a change of active power generating and vica versa.
 - (c) The Power Generating Modules are of Type A, Type B or Type C.
 - (d) Combined heat and power generating facilities shall be assessed on the basis of their electrical **Maximum Capacity**.
- ECC.6.2.3 Requirements at EU Grid Supply Points relating to Network Operators and Non-Embedded Customers
- ECC.6.2.3.1 <u>Protection Arrangements for EU Code Users in respect of Network Operators and Non-</u> Embedded Customers
- ECC.6.2.3.1.1 Protection arrangements for EU Code Users in respect of Network Operators and Non-Embedded Customers User Systems directly connected to the National Electricity Transmission System, shall meet the requirements given below:

Fault Clearance Times

(a) The required fault clearance time for faults on **Network Operator** and **Non-Embedded Customer** equipment directly connected to the **National Electricity Transmission System**, and for faults on the **National Electricity Transmission System** directly connected to the **Network Operator's** or **Non-Embedded Customer's equipment**, from fault inception to the circuit breaker arc extinction, shall be set out in each **Bilateral Agreement**. The fault clearance time specified in the **Bilateral Agreement** shall not be shorter than the durations specified in (i), (ii) and (iii) below:

- (i) 80ms for connections operating at a nominal voltage of greater than 300kV
- (ii) 100ms for connections operating at a nominal voltage of greater than 132kV and up to 300kV
- (iii) 120ms for connections operating at a nominal voltage of greater than 132kV and below

but this shall not prevent the **User** or **The Company** or **Relevant Transmission Licensee** from selecting a shorter fault clearance time on its own **Plant** and **Apparatus** provided **Discrimination** is achieved.

For the purpose of establishing the **Protection** requirements in accordance with ECC.6.2.3.1.1 only, the point of connection of the **Network Operator** or **Non-Embedded Customer** equipment to the **National Electricity Transmission System** shall be deemed to be the low voltage busbars at an **EU Grid Supply Point**, irrespective of the ownership of the equipment at the **EU Grid Supply Point**.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **Network Operator** and **Non-Embedded Customers** equipment may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements in **The Company's** view permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault must be less than 2%.

- (b) (i) For the event of failure of the **Protection** systems provided to meet the above fault clearance time requirements, **Back-Up Protection** shall be provided by the **Network Operator** or **Non-Embedded Customer** as the case may be.
 - (ii) The Relevant Transmission Licensee will also provide Back-Up Protection, which will result in a fault clearance time longer than that specified for the Network Operator or Non-Embedded Customer Back-Up Protection so as to provide Discrimination.
 - (iii) For connections with the National Electricity Transmission System at 132kV and below, it is normally required that the Back-Up Protection on the National Electricity Transmission System shall discriminate with the Network Operator or Non-Embedded Customer's Back-Up Protection.
 - (iv) For connections with the National Electricity Transmission System operating at a nominal voltage greater than 132kV, the Back-Up Protection will be provided by the Network Operator or Non-Embedded Customer, as the case may be, with a fault clearance time not longer than 300ms for faults on the Network Operator's or Non-Embedded Customer's Apparatus.
 - (v) Such Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection operating at a nominal voltage of greater than 132kV. This will permit Discrimination between Network Operator's Back-Up Protection or Non-Embedded Customer's Back-Up Protection, as the case may be, and Back-Up Protection provided on the National Electricity Transmission System and other User Systems. The requirement for and level of Discrimination required will be specified in the Bilateral Agreement.
- (c) (i) Where the Network Operator or Non-Embedded Customer is connected to part of the National Electricity Transmission System operating at a nominal voltage greater than 132kV and in Scotland also at 132kV, and a circuit breaker is provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, to interrupt the interchange of fault current with the National Electricity Transmission System or the System of the Network Operator or Non-Embedded Customer, as the case may be, circuit breaker fail Protection will be provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may

be, on this circuit breaker.

- (ii) In the event, following operation of a **Protection** system, of a failure to interrupt fault current by these circuit-breakers within the **Fault Current Interruption Time**, the circuit breaker fail **Protection** is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty items of **Apparatus**.

ECC.6.2.3.2 Fault Disconnection Facilities

- (a) Where no Transmission circuit breaker is provided at the User's connection voltage, the User must provide The Company with the means of tripping all the User's circuit breakers necessary to isolate faults or System abnormalities on the National Electricity Transmission System. In these circumstances, for faults on the User's System, the User's Protection should also trip higher voltage Transmission circuit breakers. These tripping facilities shall be in accordance with the requirements specified in the Bilateral Agreement.
- (b) The Company may require the installation of a System to Generator Operational Intertripping Scheme in order to enable the timely restoration of circuits following power System fault(s). These requirements shall be set out in the relevant Bilateral Agreement.

ECC.6.2.3.3 <u>Automatic Switching Equipment</u>

Where automatic reclosure of **Transmission** circuit breakers is required following faults on the **User's System**, automatic switching equipment shall be provided in accordance with the requirements specified in the **Bilateral Agreement**.

ECC.6.2.3.4 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

ECC.6.2.3.5 Work on Protection equipment

Where a **Transmission Licensee** owns the busbar at the **Connection Point**, no busbar **Protection**, mesh corner **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Network Operator** or **Non-Embedded Customer's Apparatus** itself) may be worked upon or altered by the **Network Operator** or **Non-Embedded Customer** personnel in the absence of a representative of the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

ECC.6.2.3.6 <u>Equipment including Protection equipment to be provided</u>

The Company in coordination with the Relevant Transmission Licensee shall specify and agree the Protection schemes and settings at each EU Grid Supply Point required to protect the National Electricity Transmission System in accordance with the characteristics of the Network Operator's or Non Embedded Customer's System. The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the protection schemes and settings in respect of the busbar protection zone in respect of each EU Grid Supply Point.

Protection of the **Network Operator**'s or **Non Embedded Customer**'s **System** shall take precedence over operational controls whilst respecting the security of the **National Electricity Transmission System** and the health and safety of staff and the public.

ECC.6.2.3.6.1 <u>Protection of Interconnecting Connections</u>

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**.

ECC.6.2.3.7 Changes to Protection Schemes

ECC.6.2.3.7.1 At EU Grid Supply Points

Any alterations to the busbar protection settings at the EU Grid Supply Point (whether by The Company, the Relevant Transmission Licensee, the Network Operator or the Non Embedded Customer) shall be agreed between The Company (in co-ordination with the Relevant Transmission Licensee) and the Network Operator or Non Embedded Customer in accordance with the Grid Code (ECC.6.2.3.4). No alterations are to be made to any busbar protection schemes unless agreement has been reached between The Company, the Relevant Transmission Licensee, the Network Operator or Non Embedded Customer.

No **Network Operator** or **Non-Embedded Customer** equipment shall be energised until the **Protection** settings have been agreed prior to commissioning. The **Network Operator** or **Non-Embedded Customer** shall agree with **The Company** (in coordination with the **Relevant Transmission Licensee**) and carry out a combined commissioning programme for the **Protection** systems, and generally, to a minimum standard as specified in the **Bilateral Agreement**.

ECC.6.2.3.7.2 Network Operators Systems

Network Operators shall, if required in a Restoration Plan, have the ability to switch:-

- a) From the normal to the alternative **Protection** settings on their **Plant** and **Apparatus**;
 and:-
- b) From the alternative to the normal **Protection** settings whilst their **Plant** remains in service.

Any alternative **Protection** settings shall be included in the **Restoration Plan**. Normal and alternative **Protection** settings shall be agreed between **The Company** and the **Network Operator** as part of developing a **Restoration Plan**.

ECC.6.2.3.8 Control Requirements

ECC.6.2.3.8.1 The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the control schemes and settings at each EU Grid Supply Point of the different control devices of the Network Operator's or Non Embedded Customer's System relevant for security of the National Electricity Transmission System. Such requirements would be pursuant to the terms of the Bilateral Agreement which shall also cover at least the following elements:

- (a) Isolated (National Electricity Transmission System) operation;
- (b) Damping of oscillations;
- (c) Disturbances to the National Electricity Transmission System;
- (d) Automatic switching to emergency supply and restoration to normal topology;
- (e) Automatic circuit breaker re-closure (on 1-phase faults).

ECC.6.2.3.8.2 Subject to the requirements of ECC.6.2.3.8.1, any changes to the schemes and settings, defined in ECC.6.2.3.8.1 of the different control devices of the Network Operator's or Non-Embedded Customer's System at the EU Grid Supply Point shall be coordinated and agreed between The Company, the Relevant Transmission Licensee, the Network Operator or Non Embedded Customer. Network Operators shall have the ability to switch between alternative control settings on their Plant and Apparatus if they are required to do so to be able to satisfy their obligations of a Restoration Plan. Any alternative control settings shall be included in the Restoration Plan.

ECC.6.2.3.9 Ranking of **Protection** and Control

- ECC.6.2.3.9.1 The **Network Operator** or the **Non Embedded Customer** who owns or operates an **EU Grid Supply Point** shall set the **Protection** and control devices of its **System**, in compliance with the following priority ranking, organised in decreasing order of importance:
 - (a) National Electricity Transmission System Protection;
 - (b) Protection equipment at each EU Grid Supply Point;
 - (c) Frequency control (Active Power adjustment);
 - (d) Power restriction.

ECC.6.2.3.10 Synchronising

- ECC.6.2.3.10.1 Each **Network Operator** or **Non Embedded Customer** at each **EU Grid Supply Point** shall be capable of synchronisation within the range of frequencies specified in ECC.6.1.2 unless otherwise agreed with **The Company**.
- ECC.6.2.3.10.2 The Company and the Network Operator or Non Embedded Customer shall agree on the settings of the synchronisation equipment at each EU Grid Supply Point prior to the Completion Date. The Company and the relevant Network Operator or Non-Embedded Customer shall agree the synchronisation settings which shall include the following elements.
 - (a) Voltage;
 - (b) Frequency;
 - (c) phase angle range;
 - (d) deviation of voltage and Frequency.
- ECC.6.3 <u>GENERAL POWER GENERATING MODULE, OTSDUW AND HVDC EQUIPMENT REQUIREMENTS</u>
- This section sets out the technical and design criteria and performance requirements for Power Generating Modules (which includes Electricity Storage Modules) and HVDC Equipment (whether directly connected to the National Electricity Transmission System or Embedded) and (where provided in this section) OTSDUW Plant and Apparatus which each Generator or HVDC System Owner must ensure are complied with in relation to its Power Generating Modules, HVDC Equipment and OTSDUW Plant and Apparatus. References to Power Generating Modules, HVDC Equipment in this ECC.6.3 should be read accordingly. For the avoidance of doubt, the requirements applicable to Synchronous Power Generating Modules also apply to Synchronous Electricity Storage Modules and the requirements applicable to Power Park Modules apply to Non-Synchronous Electricity Storage Modules. In addition, the requirements applicable to Electricity Storage Modules also apply irrespective of whether the Electricity Storage Module operates in such a mode as to import or export power from the Total System.

Plant Performance Requirements

ECC.6.3.2 REACTIVE CAPABILITY

ECC.6.3.2.1 Reactive Capability for Type B Synchronous Power Generating Modules

- ECC.6.3.2.1.1 When operating at Maximum Capacity, all Type B Synchronous Power Generating Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, all Generating Units within a Type B Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or relevant Network Operator.
- ECC.6.3.2.2 Reactive Capability for Type B Power Park Modules
- ECC.6.3.2.2.1 When operating at Maximum Capacity all Type B Power Park Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, each Power Park Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or Network Operator.
- ECC.6.3.2.3 Reactive Capability for Type C and D Synchronous Power Generating Modules
- In addition to meeting the requirements of ECC.6.3.2.3.2 ECC.6.3.2.3.5, **EU Generators** which connect a **Type C** or **Type D Synchronous Power Generating Module**(s) to a **Non Embedded Customers System** or private network, may be required to meet additional reactive compensation requirements at the point of connection between the **System** and the **Non Embedded Customer** or private network where this is required for **System** reasons.
- All Type C and Type D Synchronous Power Generating Modules shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point as defined in Figure ECC.6.3.2.3 when operating at Maximum Capacity.
- At Active Power output levels other than Maximum Capacity, all Generating Units within a Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limit identified on the HV Generator Performance Chart at least down to the Minimum Stable Operating Level. At reduced Active Power output, Reactive Power supplied at the Grid Entry Point (or User System Entry Point if Embedded) shall correspond to the HV Generator Performance Chart of the Synchronous Power Generating Module, taking the auxiliary supplies and the Active Power and Reactive Power losses of the Generating Unit transformer or Station Transformer into account.

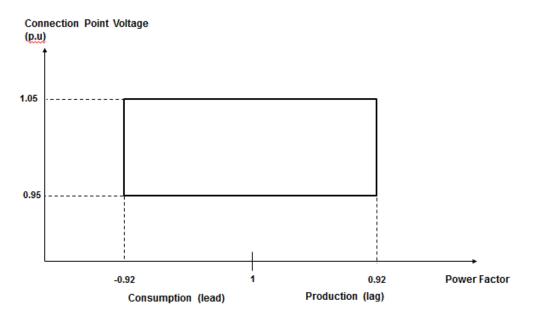


Figure ECC.6.3.2.3

In addition, to the requirements of ECC.6.3.2.3.1 – ECC.6.3.2.3.3 the short circuit ratio of all **Onshore Synchronous Generating Units** with an **Apparent Power** rating of less than 1600MVA shall not be less than 0.5. The short circuit ratio of **Onshore Synchronous Generating Units** with a rated **Apparent Power** of 1600MVA or above shall be not less than 0.4.

- ECC.6.3.2.4 Reactive Capability for Type C and D Power Park Modules, HVDC Equipment and OTSDUW Plant and Apparatus at the Interface Point
- EU Generators or HVDC System Owners which connect an Onshore Type C or Onshore Type D Power Park Module or HVDC Equipment to a Non Embedded Customers System or private network, may be required to meet additional reactive compensation requirements at the point of connection between the System and the Non Embedded Customer or private network where this is required for System reasons.
- ECC.6.3.2.4.2 All Onshore Type C Power Park Modules and Onshore Type D Power Park Modules or HVDC Converters at an HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage above 33kV, or Remote End HVDC Converters with an HVDC Interface Point voltage above 33kV, or OTSDUW Plant and Apparatus with an Interface Point voltage above 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus, or HVDC Interface Point in the case of a Remote End HVDC Converter Station) as defined in Figure ECC.6.3.2.4(a) when operating at Maximum Capacity (or Interface Point Capacity in the case of OTSUW Plant and Apparatus). In the case of Remote End HVDC Converters and DC Connected Power Park Modules, The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

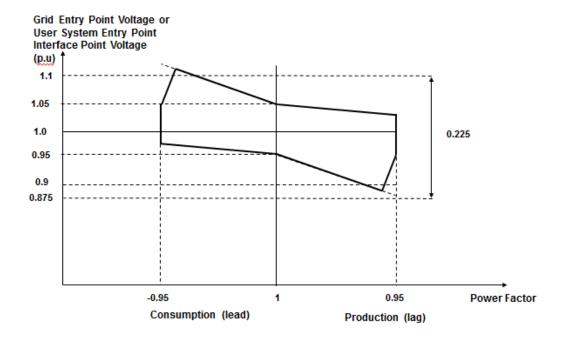


Figure ECC.6.3.2.4(a)

All Onshore Type C or Type D Power Park Modules or HVDC Converters at a HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage at or below 33kV or Remote End HVDC Converter Station with an HVDC Interface Point Voltage at or below 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point as defined in Figure ECC.6.3.2.4(b) when operating at Maximum Capacity. In the case of Remote End HVDC Converters The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

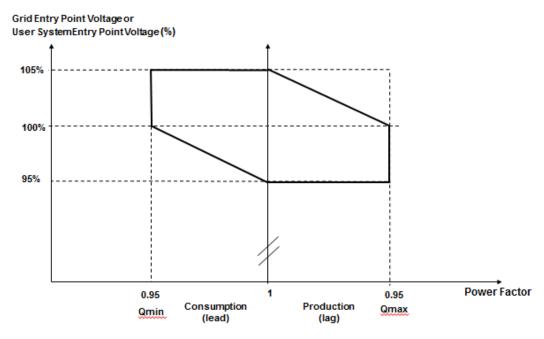


Figure ECC.6.3.2.4(b)

All Type C and Type D Power Park Modules, HVDC Converters at a HVDC Converter Station including Remote End HVDC Converters or OTSDUW Plant and Apparatus, shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point Capacity in the case of OTSUW Plant and Apparatus or HVDC Interface Point in the case of Remote End HVDC Converter Stations) as defined in Figure ECC.6.3.2.4(c) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.4(c) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified by The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. In the case of Remote End HVDC Converters, The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

ECC.6.3.2.4.4

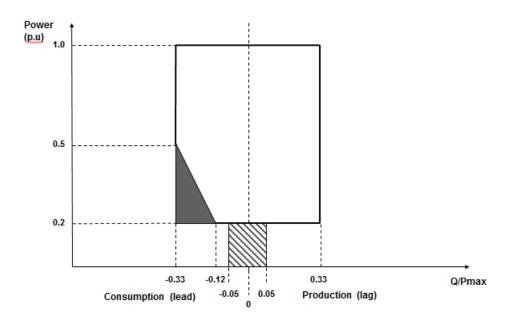


Figure ECC.6.3.2.4(c)

ECC.6.3.2.5 Reactive Capability for Offshore Synchronous Power Generating Modules,

Configuration 1 AC connected Offshore Power Park Modules and Configuration 1 DC

Connected Power Park Modules.

ECC.6.3.2.5.1 The short circuit ratio of any Offshore Synchronous Generating Units within a Synchronous Power Generating Module shall not be less than 0.5. Notwithstanding the requirements of ECC.6.3.2.5.2 and ECC.6.3.2.5.3, all Offshore Synchronous Generating Units, Configuration 1 AC Connected Offshore Power Park Modules or Configuration 1 DC Connected Power Park Modules must be capable of maintaining zero transfer of Reactive Power at the Offshore Grid Entry Point. The steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr shall be no greater than 5% of the Maximum Capacity.

If an **EU Generator** (including those in respect of **DC Connected Power Park Modules** or those which are **Restoration Contractors**), wish to provide a **Reactive Power** capability in excess of the minimum requirements defined in ECC.6.3.2.5.1, then such capability (including steady state tolerance) shall be agreed between the **Generator**, **Offshore Transmission Licensee** and **The Company** and/or the relevant **Network Operator**.

- In the case of EU Code Users and Restoration Contractors who own and operate Anchor Plant and/or Top Up Restoration Plant or EU Code Users who own and operate Plant and Apparatus which is operating with a Grid Forming Capability in service, the Reactive Power capability requirements (including steady state tolerance) at the Offshore Grid Entry Point shall be agreed between the Restoration Contractor or EU Code User, the Offshore Transmission Licensee and The Company in order to facilitate the operation of an Offshore Local Joint Restoration Plan.
- ECC.6.3.2.6 Reactive Capability for Configuration 2 AC Connected Offshore Power Park Modules
 and Configuration 2 DC Connected Power Park Modules.
- All Configuration 2 AC connected Offshore Power Park Modules and Configuration 2

 DC Connected Power Park Modules shall be capable of satisfying the minimum Reactive
 Power capability requirements at the Offshore Grid Entry Point as defined in Figure
 ECC.6.3.2.6(a) when operating at Maximum Capacity. The Company in co-ordination
 with the Relevant Transmission Licensee may agree to alternative reactive capability
 requirements to those specified in Figure ECC.6.3.2.6(a), where it is demonstrated that it
 is uneconomic and inefficient to do so, for example in the case of new technologies or
 advanced control strategies.

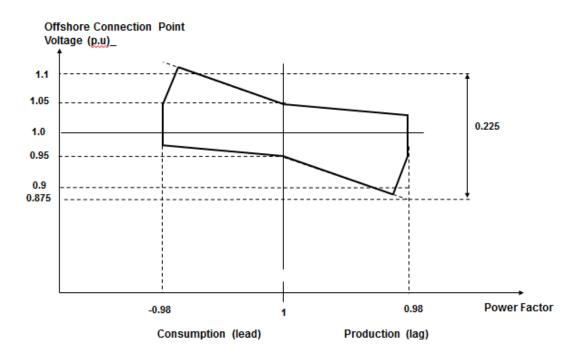


Figure ECC.6.3.2.6(a)

All AC Connected Configuration 2 Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules shall be capable of satisfying the Reactive Power capability requirements at the Offshore Grid Entry Point as defined in Figure ECC.6.3.2.6(b) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.6(b) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified with The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.6(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies.

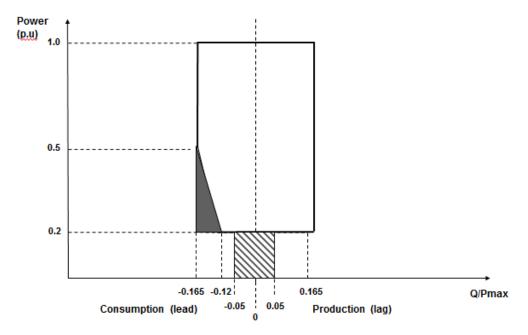
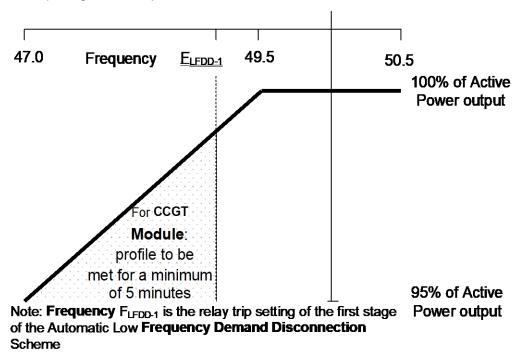



Figure ECC.6.3.2.6(b)

- ECC.6.3.2.6.3 For the avoidance of doubt, if an **EU Generator** (including **Generators** in respect of **DC**Connected Power Park Modules or those which are Restoration Contractors referred to in ECC.6.3.2.6.2) wishes to provide a Reactive Power capability in excess of the minimum requirements defined in ECC.6.3.2.6.1, then such capability (including any steady state tolerance) shall be agreed between the **EU Generator**, Offshore Transmission Licensee and The Company and/or the relevant Network Operator.
- ECC.6.3.2.6.4 In addition to the requirements of ECC.6.3.2.6.2, EU Generators and HVDC System Owners and Restoration Contractors who own and operate Anchor Plant and/or Top Up Restoration Plant, then the Reactive Power capability requirements (including steady state tolerance) at the Offshore Grid Entry Point shall be agreed between the Generator, Offshore Transmission Licensee and The Company in order to facilitate the operation of an Offshore Local Joint Restoration Plan.
- ECC.6.3.3 OUTPUT POWER WITH FALLING FREQUENCY
- ECC.6.3.3.1 Output power with falling frequency for **Power Generating Modules** and **HVDC Equipment**
- ECC.6.3.3.1.1 Each **Power Generating Module** and **HVDC Equipment** must be capable of:
 - (a) continuously maintaining constant **Active Power** output for **System Frequency** changes within the range 50.5 to 49.5 Hz; and

(b) (subject to the provisions of ECC.6.1.2) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure ECC.6.3.3(a) for **System Frequency** changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the System Frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. In the case of a CCGT Module, the above requirement shall be retained down to the Low Frequency Relay trip setting of 48.8 Hz, which reflects the first stage of the Automatic Low Frequency Demand Disconnection scheme notified to Network Operators under OC6.6.2. For **System Frequency** below that setting, the existing requirement shall be retained for a minimum period of 5 minutes while System Frequency remains below that setting, and special measure(s) that may be required to meet this requirement shall be kept in service during this period. After that 5 minutes period, if System Frequency remains below that setting, the special measure(s) must be discontinued if there is a materially increased risk of the **Gas Turbine** tripping. The need for special measure(s) is linked to the inherent Gas Turbine Active Power output reduction caused by reduced shaft speed due to falling System Frequency. Where the need for special measures is identified in order to maintain output in line with the level identified in Figure ECC.6.3.3(a) these measures should be still continued at ambient temperatures above 25°C maintaining as much of the Active Power achievable within the capability of the plant. For the avoidance of doubt, Generators in respect of Pumped Storage shall also be required to satisfy the requirements of OC6.6.6.

Figure ECC.6.3.3(a) Active Power Output with falling frequency for Power Generating Modules and HVDC Systems and Electricity Storage Modules when operating in an exporting mode of operation

(c) For the avoidance of doubt, in the case of a Power Generating Module including a DC Connected Power Park Module using an Intermittent Power Source where the mechanical power input will not be constant over time, the requirement is that the Active Power output shall be independent of System Frequency under (a) above and should not drop with System Frequency by greater than the amount specified in (b) above.

(d) An HVDC System must be capable of maintaining its Active Power input (i.e. when operating in a mode analogous to Demand) from the National Electricity Transmission System (or User System in the case of an Embedded HVDC System) at a level not greater than the figure determined by the linear relationship shown in Figure ECC.6.3.3(b) for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47.8 Hz the Active Power input decreases by more than 60%.

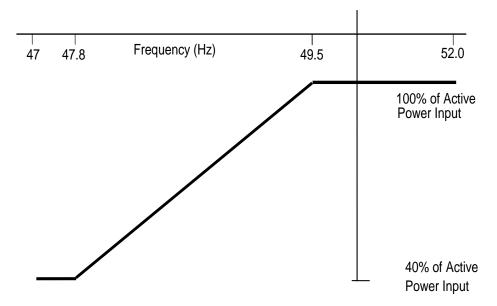


Figure ECC.6.3.3(b) Active Power input with falling frequency for HVDC Systems

- (e) In the case of an Offshore Generating Unit or Offshore Power Park Module or DC Connected Power Park Module or Remote End HVDC Converter or Transmission DC Converter, the EU Generator shall comply with the requirements of ECC.6.3.3. EU Generators should be aware that Section K of the STC places requirements on Offshore Transmission Licensees which utilise a Transmission DC Converter as part of their Offshore Transmission System to make appropriate provisions to enable EU Generators to fulfil their obligations.
- (f) Transmission DC Converters and Remote End HVDC Converters shall provide a continuous signal indicating the real time frequency measured at the Interface Point to the Offshore Grid Entry Point or HVDC Interface Point for the purpose of Offshore Generators or DC Connected Power Park Modules to respond to changes in System Frequency on the Main Interconnected Transmission System. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.
- (g) For HVDC Systems with a Completion Date on or after 31 December 2026, HVDC System Owners shall ensure that each HVDC System has the capability to provide a continuous signal indicating the real time frequency measured at the Grid Entry Point and HVDC Interface Point and other signals as agreed with The Company for the purpose of participating in a Local Joint Restoration Plan or wider System Restoration event. The frequency signal at the Interface Point shall be capable of being received and processed within 100ms.
- (h) For Transmission DC Converters with a Completion Date on or after 31 December 2026, Offshore Transmission Licensees shall ensure that each Transmission DC Converter has the capability to provide a continuous signal indicating the real time frequency measured at the Offshore Grid Entry Point and HVDC Interface Point to the Interface Point for the purpose of participating in an Offshore Local Joint Restoration Plan or wider System Restoration event. The frequency signal at the Interface Point shall be capable of being received and processed within 100ms. This requirement shall be necessary where one or more Offshore Generators are part of an Offshore Local Joint Restoration Zone Plan.

ECC.6.3.4 ACTIVE POWER OUTPUT UNDER SYSTEM VOLTAGE VARIATIONS

At the **Grid Entry Point** or **User System Entry Point**, the **Active Power** output under steady state conditions of any **Power Generating Module** or **HVDC Equipment** directly connected to the **National Electricity Transmission System** or in the case of **OTSDUW**, the **Active Power** transfer at the **Interface Point**, under steady state conditions of any **OTSDUW Plant and Apparatus** should not be affected by voltage changes in the normal operating range specified in paragraph ECC.6.1.4 by more than the change in **Active Power** losses at reduced or increased voltage.

ECC.6.3.5 <u>SYSTEM RESTORATION</u>

- ECC.6.3.5.1 It is not a mandatory requirement for **Generators**, or **HVDC System Owners** to provide an **Anchor Plant Capability** or **Top Up Restoration Capability**, however **EU Code Users** may wish to notify **The Company** of their ability to provide such a facility and the cost of the service. **The Company** will then consider whether it wishes to contract with the **EU Code User** for the provision of such a service which would be specified via an **Anchor Restoration Contract** or **Top Up Restoration Contract**. Where an **EU Code User** does not offer to provide a cost for the provision of an **Anchor Plant Capability**, **The Company** may make such a request if it considers **System** security to be at risk due to a lack of **Anchor Plant** capability.
- ECC.6.3.5.2 It is an essential requirement that **The Company** has a means of implementing **System Restoration** in accordance with the requirements of the **Electricity System Restoration Standard**. This is facilitated by agreeing contracts with **Restoration Contractors** who have **Plant** at a number of strategically located sites. In the case of **Restoration Contractors** who are party to a **Distribution Restoration Zone Plan**, **The Company** shall agree the requirements with the relevant **Network Operator** and **Restoration Contractors**.
- ECC.6.3.5.3 The following requirements shall apply in respect of each Type C Power Generating Module, Type D Power Generating Module and DC Connected Power Park Module which have an Anchor Restoration Contract.
 - (i) The Power-Generating Module or DC Connected Power Park Module shall be capable of starting from a Total Shutdown or Partial Shutdown without any external electrical energy supply within either 2 hours of receiving an instruction from The Company in the case of Local Joint Restoration Plan or alternatively 8 hours of receiving an instruction from a Network Operator in the case of a Distribution Restoration Zone Plan;
 - (ii) Each **Power Generating Module** or **DC Connected Power Park Module** shall be able to synchronise within the frequency limits defined in ECC.6.1.2 and, where applicable, voltage limits specified in ECC.6.1.4;
 - (iii) The **Power Generating Module** or **DC Connected Power Park Module** shall be capable of energising an unenergised part of the **System**;
 - (iv) The Power-Generating Module or DC Connected Power Park Module shall be capable of automatically regulating dips in voltage caused by connection of demand;
 - (v) The Power Generating Module or DC Connected Power Park Module shall;
 - be capable of a Block Load Capability,

be capable of operating in **LFSM-O** and **LFSM-U**, as specified in ECC.6.3.7.1 and ECC.6.3.7.2,

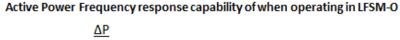
control **Frequency** in case of overfrequency and underfrequency within the whole **Active Power** output range between the **Minimum Regulating Level** and **Maximum Capacity** as well as at **Houseload Operation** levels, and

be capable of parallel operation together with other **Power Generating Modules** including **DC Connected Power Park Modules** within an isolated part of the **Total System** that is still supplying **Customers**, and controlling voltage automatically during the system restoration phase;

- (vi) Power Park Modules (including DC Connected Power Park Modules) and HVDC Equipment which provide an Anchor Plant Capability, shall also be capable of satisfying the relevant Grid Forming Capability requirements defined in ECC.6.3.19 as agreed with The Company.
- ECC.6.3.5.4 Each HVDC System or Remote End HVDC Converter Station which has Anchor Plant Capability and an Anchor Restoration Contract shall be capable of energising the busbar of an AC substation to which another HVDC Converter Station is connected. The timeframe after shutdown of the HVDC System prior to energisation of the AC substation shall be pursuant to the terms of the Anchor Restoration Contract. The HVDC System shall be able to synchronise within the Frequency limits defined in ECC.6.1.2.1.2 and voltage limits defined in ECC.6.1.4.1 unless otherwise specified in the Anchor Restoration Contract. Wider Frequency and voltage ranges can be specified in the Anchor Restoration Contract in order to restore System security.
- ECC.6.3.5.5 With regard to the capability to take part in operation of an isolated part of the **Total System** that is still supplying **Customers**:
 - i Power Generating Modules including DC Connected Power Park Modules shall be capable of taking part in island operation if specified in the Anchor Restoration Contract or Top Up Restoration Contract and:
 - ii the **Frequency** limits for island operation shall be those specified in ECC.6.1.2;
 - iii the voltage limits for island operation shall be those defined in ECC.6.1.4;
 - Power Generating Modules including DC Connected Power Park Modules shall be able to operate in Frequency Sensitive Mode during island operation, as specified in ECC.6.3.7.3. In the event of a power surplus, Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing the Active Power output from a previous operating point to any new operating point within the Power Generating Module Performance Chart. Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing Active Power output as much as inherently technically feasible, but to at least 55 % of Maximum Capacity;
 - v The method for detecting a change from interconnected system operation to island operation shall be agreed between the EU Generator, The Company and the Relevant Transmission Licensee. The agreed method of detection must not rely solely on The Company, Relevant Transmission Licensee's or Network Operators switchgear position signals;
 - vi **Power Generating Modules** including **DC Connected Power Park Modules** shall be able to operate in **LFSM-O** and **LFSM-U** during island operation, as specified in ECC.6.3.7.1 and ECC.6.3.7.2;
- ECC.6.3.5.6 With regard to quick re-synchronisation capability:
 - (i) In case of disconnection of the Power Generating Module including DC Connected Power Park Modules from the System, the Power Generating Module shall be capable of quick re-synchronisation in line with the Protection strategy agreed between The Company and/or Network Operator in co-ordination with the Relevant Transmission Licensee and the Generator;
 - (ii) A Power Generating Module including a DC Connected Power Park Module with a minimum re-synchronisation time greater than 15 minutes after its disconnection from any external power supply must be capable of Houseload Operation from any operating point on its Power Generating Module Performance Chart. In this case, the identification of Houseload Operation must not be based solely on the Total System's-switchgear position signals;
 - (iii) Power Generating Modules including DC Connected Power Park Modules shall be capable of Houseload Operation, irrespective of any auxiliary connection to the Total System. The minimum operation time shall be specified by The Company, taking into consideration the specific characteristics of prime mover technology.

- ECC.6.3.5.7 Restoration Contractors who are Offshore Generators and Transmission DC Converter owners who are part of an Offshore Local Joint Restoration Plan shall ensure their Plant and Apparatus is designed to satisfy the requirements of ECC.7.10 and ECC.7.11.
- ECC.6.3.6 CONTROL ARRANGEMENTS
- ECC.6.3.6.1 **ACTIVE POWER** CONTROL
- ECC.6.3.6.1.1 <u>Active Power control in respect of Power Generating Modules including DC Connected</u>
 Power Park Modules
- ECC.6.3.6.1.1.1Type A Power Generating Modules shall be equipped with a logic interface (input port) in order to cease Active Power output within five seconds following receipt of a signal from The Company. The Company shall specify the requirements for such facilities, including the need for remote operation, in the Bilateral Agreement where they are necessary for System reasons.
- ECC.6.3.6.1.1.2**Type B Power Generating Modules** shall be equipped with an interface (input port) in order to be able to reduce **Active Power** output following receipt of a signal from **The Company**. **The Company** shall specify the requirements for such facilities, including the need for remote operation, in the **Bilateral Agreement** where they are necessary for **System** reasons.
- ECC.6.3.6.1.1.3**Type C** and **Type D Power Generating Modules** and **DC Connected Power Park Modules** shall be capable of adjusting the **Active Power** setpoint in accordance with instructions issued by **The Company.**
- ECC.6.3.6.1.2 Active Power control in respect of HVDC Systems and Remote End HVDC Converter Stations
- ECC.6.3.6.1.2.1**HVDC Systems** shall be capable of adjusting the transmitted **Active Power** upon receipt of an instruction from **The Company** which shall be in accordance with the requirements of BC2.6.1.
- ECC.6.3.6.1.2.2The requirements for fast **Active Power** reversal (if required) shall be specified by **The Company**. Where **Active Power** reversal is specified in the **Bilateral Agreement**, each **HVDC System** and **Remote End HVDC Converter Station** shall be capable of operating from maximum import to maximum export in a time which is as fast as technically feasible or in a time that is no greater than 2 seconds except where a **HVDC Converter Station Owner** has justified to **The Company** that a longer reversal time is required.
- ECC.6.3.6.1.2.3Where an HVDC System connects various Control Areas or Synchronous Areas, each HVDC System or Remote End HVDC Converter Station shall be capable of responding to instructions issued by The Company under the Balancing Code to modify the transmitted Active Power for the purposes of cross-border balancing.
- ECC.6.3.6.1.2.4An **HVDC System** shall be capable of adjusting the ramping rate of **Active Power** variations within its technical capabilities in accordance with instructions issued by **The Company**. In case of modification of **Active Power** according to ECC.6.3.15 and ECC.6.3.6.1.2.2, there shall be no adjustment of ramping rate.
- ECC.6.3.6.1.2.5If specified by **The Company**, in coordination with the **Relevant Transmission Licensees**, the control functions of an **HVDC System** shall be capable of taking automatic remedial actions including, but not limited to, stopping the ramping and blocking FSM, LFSM-O, LFSM-U and **Frequency** control. The triggering and blocking criteria shall be specified by **The Company**.
- ECC.6.3.6.2 MODULATION OF ACTIVE POWER

ECC.6.3.6.2.1 Each Power Generating Module (including DC Connected Power Park Modules) and Onshore HVDC Converters at an Onshore HVDC Converter Station must be capable of contributing to Frequency control by continuous modulation of Active Power supplied to the National Electricity Transmission System. For the avoidance of doubt each Onshore HVDC Converter at an Onshore HVDC Converter Station and/or OTSDUW DC Converter shall provide each EU Code User in respect of its Offshore Power Stations connected to and/or using an Offshore Transmission System a continuous signal indicating the real time Frequency measured at the Transmission Interface Point. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.


ECC.6.3.6.3 MODULATION OF REACTIVE POWER

ECC.6.3.6.3.1 Notwithstanding the requirements of ECC.6.3.2, each **Power Generating Module** or **HVDC Equipment** (and **OTSDUW Plant and Apparatus** at a **Transmission Interface Point** and **Remote End HVDC Converter** at an **HVDC Interface Point**) (as applicable) must be capable of contributing to voltage control by continuous changes to the **Reactive Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**.

ECC.6.3.7 FREQUENCY RESPONSE

- ECC.6.3.7.1 <u>Limited Frequency Sensitive Mode Overfrequency (LFSM-O)</u>
- ECC.6.3.7.1.1 Each Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems shall be capable of reducing Active Power output in response to Frequency on the Total System when this rises above 50.4Hz. For the avoidance of doubt, the provision of this reduction in Active Power output is not an Ancillary Service. Such provision is known as Limited High Frequency Response. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of operating stably during LFSM-O operation. However for a Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Frequency Sensitive Mode the requirements of LFSM-O shall apply when the frequency exceeds 50.5Hz.
- ECC.6.3.7.1.2 (i) The rate of change of **Active Power** output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of **System Frequency** above 50.4Hz (ie a **Droop** of 10%) as shown in Figure ECC.6.3.7.1 below. This would not preclude a **EU Generator** or **HVDC System Owner** from designing their **Power Generating Module** with a **Droop** of less than 10% but in all cases the **Droop** should be 2% or greater.
 - (ii) The reduction in **Active Power** output must be continuously and linearly proportional, as far as is practicable, to the excess of **Frequency** above 50.4 Hz and must be provided increasingly with time over the period specified in (iii) below.
 - (iii) As much as possible of the proportional reduction in Active Power output must result from the frequency control device (or speed governor) action and must be achieved within 10 seconds of the time of the Frequency increase above 50.4 Hz. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of initiating a power Frequency response with an initial delay that is as short as possible. If the delay exceeds 2 seconds the EU Generator or HVDC System Owner shall justify the variation, providing technical evidence to The Company.
 - (iv) The residue of the proportional reduction in Active Power output which results from automatic action of the Power Generating Module (including DC Connected Power Park Modules) or HVDC System output control devices other than the frequency control devices (or speed governors) must be achieved within 3 minutes for the time of the Frequency increase above 50.4Hz.
 - (v) For the avoidance of doubt, the **LFSM-O** response must be reduced when the **Frequency** falls again and, when to a value less than 50.4Hz, as much as possible of the increase in **Active Power** must be achieved within 10 seconds.

(vi) For Type A and Type B Power Generating Modules which are not required to have Frequency Sensitive Mode (FSM) as described in ECC.6.3.7.3 for deviations in Frequency up to 50.9Hz at least half of the proportional reduction in Active Power output must be achieved in 10 seconds of the time of the Frequency increase above 50.4Hz. For deviations in Frequency beyond 50.9Hz the measured rate of change of Active Power reduction must exceed 0.5%/sec of the initial output. The LFSM-O response must be reduced when the Frequency subsequently falls again and when to a value less than 50.4Hz, at least half the increase in Active Power must be achieved in 10 seconds. For a Frequency excursion returning from beyond 50.9Hz the measured rate of change of Active Power increase must exceed 0.5%/second.

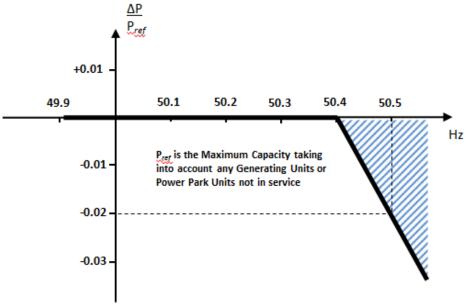


Figure ECC.6.3.7.1 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a negative **Active Power** output change with a droop of 10% or less based on Pref.

- ECC.6.3.7.1.3 Each Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems which is providing Limited High Frequency Response (LFSM-O) must continue to provide it until the Frequency has returned to or below 50.4Hz or until otherwise instructed by The Company. EU Generators in respect of Gensets and HVDC Converter Station Owners in respect of an HVDC System should also be aware of the requirements in BC.3.7.2.2.
- ECC.6.3.7.1.4 Steady state operation below the Minimum Stable Operating Level in the case of Power Generating Modules including DC Connected Power Park Modules or Minimum Active Power Transmission Capacity in the case of HVDC Systems is not expected but if System operating conditions cause operation below the Minimum Stable Operating Level or Minimum Active Power Transmission Capacity which could give rise to operational difficulties for the Power Generating Module including a DC Connected Power Park Module or HVDC Systems then the EU Generator or HVDC System Owner shall be able to return the output of the Power Generating Module including a DC Connected Power Park Module to an output of not less than the Minimum Stable Operating Level or HVDC System to an output of not less than the Minimum Active Power Transmission Capacity.

Owner to avoid such tripping provided that the System Frequency is below 52Hz in accordance with the requirements of ECC.6.1.2. If the System Frequency is at or above 52Hz, the requirement to make all reasonable efforts to avoid tripping does not apply and the EU Generator or HVDC System Owner is required to take action to protect its Power Generating Modules including DC Connected Power Park Modules or HVDC Converter Stations.

- ECC.6.3.7.2 <u>Limited Frequency Sensitive Mode Underfrequency (LFSM-U)</u>
- ECC.6.3.7.2.1 Each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Limited Frequency Sensitive Mode shall be capable of increasing Active Power output in response to System Frequency when this falls below 49.5Hz. For the avoidance of doubt, the provision of this increase in Active Power output is not a mandatory Ancillary Service and it is not anticipated Power Generating Modules (including DC Connected Power Park Modules) or HVDC Systems are operated in an inefficient mode to facilitate delivery of LFSM-U response, but any inherent capability (where available) should be made without undue delay. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of stable operation during LFSM-U Mode. For example, an EU Generator which is operating with no headroom (eg it is operating at maximum output or is de-loading as part of a run down sequence and has no headroom) would not be required to provide LFSM-U.
- The rate of change of **Active Power** output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of **System Frequency** below 49.5Hz (ie a **Droop** of 10%) as shown in Figure ECC.6.3.7.2.2 below. This requirement only applies if the **Power Generating Module** has headroom and the ability to increase **Active Power** output. In the case of a **Power Park Module** or **DC Connected Power Park Module** the requirements of Figure ECC.6.3.7.2.2 shall be reduced pro-rata to the amount of **Power Park Units** in service and available to generate. For the avoidance of doubt, this would not preclude an **EU Generator** or **HVDC System Owner** from designing their **Power Generating Module** with a lower **Droop** setting, for example between 3 5%.
 - (ii) As much as possible of the proportional increase in Active Power output must result from the Frequency control device (or speed governor) action and must be achieved for Frequencies below 49.5 Hz. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of initiating a power Frequency response with minimal delay. If the delay exceeds 2 seconds the EU Generator or HVDC System Owner shall justify the delay, providing technical evidence to The Company).
 - (iii) The actual delivery of **Active Power Frequency Response** in **LFSM-U** mode shall take into account

The ambient conditions when the response is to be triggered

The operating conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems** in particular limitations on operation near **Maximum Capacity** or **Maximum HVDC Active Power Transmission Capacity** at low frequencies and the respective impact of ambient conditions as detailed in ECC.6.3.3.

The availability of primary energy sources.

(iv) In LFSM_U Mode, the Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems, shall be capable of providing a power increase up to its Maximum Capacity or Maximum HVDC Active Power Transmission Capacity (as applicable).

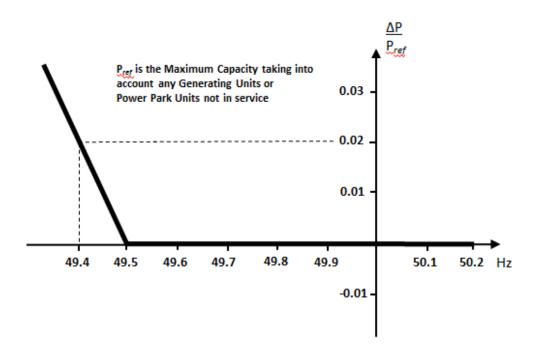


Figure ECC.6.3.7.2.2 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a positive **Active Power** output change with a droop of 10% or less based on Pref.

- ECC.6.3.7.2.3 <u>Limited Frequency Sensitive Mode Electricity Storage Modules when operating in an importing mode of operation</u>
- ECC.6.3.7.2.3.1Each Generator or Defence Service Provider or Restoration Contractor or Non-Embedded Customer in respect of an Electricity Storage Module is required to meet the requirements of ECC.6.3.7.2.3.1 (a) (f) except where it has been agreed with The Company that such an Electricity Storage Module is unable to meet these requirements in which case the requirements of OC6.6.6 shall apply:-
 - (a) Be capable of automatically maintaining its Active Power output within the shaded operating region shown in Figure ECC.6.3.7.2.3(a) until the stored energy has been depleted, except in the case of a Restoration Contractor which shall not deplete its stored energy below the level required to meet its contractual obligations. The Electricity Storage Module could initially be operating at any level of import between zero Active Power and the Maximum Import Power within a System Frequency range of 50Hz and 49.5Hz as shown in Figure ECC.6.3.7.2.3(a). For the avoidance of doubt, the Electricity Storage Module would only be required to reach its Maximum Capacity if the Electricity Storage Module has headroom and the ability to increase Active Power output. A typical value of the Droop would be 0.6% where this does not result in control system instability or plant difficulties. In all cases the Droop shall be between 0.6% and 1.2% and shall be agreed with The Company.
 - (b) Automatically respond in accordance with the characteristic of Figure ECC.6.3.7.2.3(a) when the **System Frequency** falls to 49.5Hz and below.
 - (c) The reduction in Active Power import (during an import mode of operation), and the transition to the final value of Active Power output shall be continuously and linearly proportional, as far as is practicable, to the reduction in Frequency below 49.5 Hz. Active Power output must be provided increasingly with time as required by ECC.6.3.7.2.3.1 (d) below.

- (d) As much as possible of the proportional reduction in Active Power import (when the Electricity Storage Module is in a mode analogous to Demand) must result from the Frequency control device (or speed governor) action and must be achieved within 10 seconds of the time of the Frequency decreases below 49.5 Hz. The Electricity Storage Module shall be capable of initiating a power Frequency response with an initial delay that is as short as possible. Delays that exceed 2 seconds shall be justified by the Generator or Defence Service Provider or Restoration Contractor or Non-Embedded Customer providing technical evidence to The Company and in any event as much as possible of the proportional reduction in Active Power import shall be achieved within 10 seconds. This performance requirement is to be maintained when the Electricity Storage Module makes the transition to an Active Power export mode of operation unless the energy store is depleted, in which case it shall be required to operate at zero Active Power output.
- (e) Where the **Electricity Storage Module** is not capable of making a transition from import operation to export operation within 20 seconds of the **System Frequency** falling to 49.2Hz, then it shall then immediately reduce its **Active Power** import to zero.
- (f) If the Electricity Storage Module has not achieved at least a zero Active Power import when the System Frequency has reached 48.9Hz, it shall be instantaneously tripped. Where a Electricity Storage Module trips, it shall not be permitted to reconnect to the System until instructed by The Company in accordance with BC2.5.2 and as provided for in ECC.6.2.2.11.

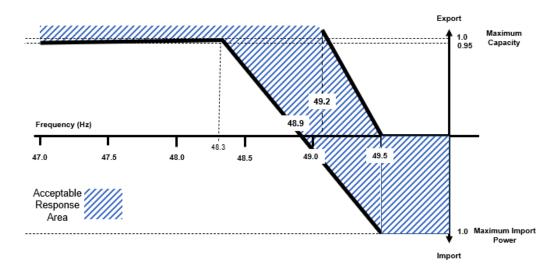


Figure ECC.6.3.7.2.3(a) **Active Power** performance with falling frequency

Where an **Electricity Storage Module** has been importing and has responded in accordance with the requirements of ECC.6.3.7.2.3.1, its performance, once the **System Frequency** starts to rise above the minimum reached, shall be in accordance with Figure ECC.6.3.7.2.3(b) in respect of the **Active Power** output and **Active Power** import. For example, Figure ECC.6.3.7.2.3(b), illustrates the four operating points W, X, Y and Z. If points W, X, Y and Z denotes the minimum frequency that the **Total System** reached during a particular low **System Frequency** event, as the **System Frequency** starts to rise, the **Active Power** output of the **Electricity Storage Module** should remain at a constant level (where the energy source has not been depleted) until 49.5Hz is reached as denoted by the dashed black lines. Once the **System Frequency** has risen above 49.5Hz the **Electricity Storage Module** is permitted to reduce **Active Power** output so long as it is operates within the shaded area above 49.5Hz shown in Figure ECC.6.3.7.2.3(b), unless the **Electricity Storage Module** has insufficient capability in which case it shall operate at zero **Active Power**.

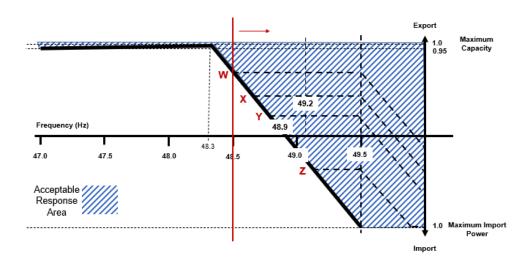


Figure ECC.6.3.7.2.3(b) Active Power performance with increasing frequency

ECC.6.3.7.2.3.3 Where an **Electricity Storage Module** is exporting **Active Power** to the **Total System** (including zero) and the **System Frequency** falls below 49.5Hz the requirements of ECC.6.3.7.2.1 and ECC.6.3.7.2.2 shall apply.

ECC.6.3.7.3 Frequency Sensitive Mode – (FSM)

ECC.6.3.7.3.1 In addition to the requirements of ECC.6.3.7.1 and ECC.6.3.7.2 each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems must be fitted with a fast acting proportional Frequency control device (or turbine speed governor) and unit load controller or equivalent control device to provide Frequency response under normal operational conditions in accordance with Balancing Code 3 (BC3). In the case of a Power Park Module including a DC Connected Power Park Module, the Frequency or speed control device(s) may be on the Power Park Module (including a DC Connected Power Park Module) or on each individual Power Park Unit (including a Power Park Unit within a DC Connected Power Park Module) or be a combination of both. The Frequency control device(s) (or speed governor(s)) must be designed and operated to the appropriate:

- (i) European Specification: or
- in the absence of a relevant European Specification, such other standard which is in common use within the European Community (which may include a manufacturer specification);

as at the time when the installation of which it forms part was designed or (in the case of modification or alteration to the **Frequency** control device (or turbine speed governor)) when the modification or alteration was designed.

The **European Specification** or other standard utilised in accordance with sub paragraph ECC.6.3.7.3.1 (a) (ii) will be notified to **The Company** by the **EU Generator** or **HVDC System Owner**:

- (i) as part of the application for a Bilateral Agreement; or
- (ii) as part of the application for a varied Bilateral Agreement; or
- (iii) in the case of an Embedded Development, within 28 days of entry into the Embedded Development Agreement (or such later time as agreed with **The Company**) or
- (iv) as soon as possible prior to any modification or alteration to the **Frequency** control device (or governor); and
- ECC.6.3.7.3.2 The Frequency control device (or speed governor) in co-ordination with other control devices must control each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems Active Power Output or Active Power transfer capability with stability over the entire operating range of the Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems; and
- ECC.6.3.7.3.3 Type C and Type D Power Generating Modules and DC Connected Power Park Modules shall also meet the following minimum requirements:
 - (i) capable of providing **Active Power Frequency** response in accordance with the performance characteristic shown in Figure 6.3.7.3.3(a) and parameters in Table 6.3.7.3.3(a)

Active Power Frequency Response capability of Power Generating Modules Including HVDC connected Power Park Modules when operating in FSM

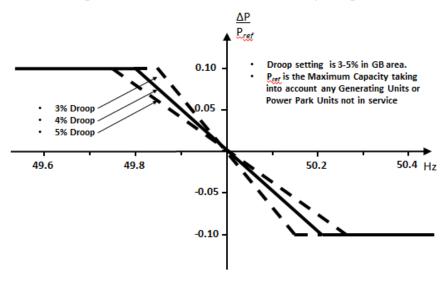


Figure 6.3.7.3.3(a) – Frequency Sensitive Mode capability of Power Generating Modules and DC Connected Power Park Modules

Parameter	Setting
Nominal System Frequency	50Hz
Active Power as a percentage of	10%
Maximum Capacity $(\frac{ AP_1 }{P_{max}})$	

Frequency Response Insensitivity in mHz (Δf_i)	±15mHz
Frequency Response Insensitivity as a percentage of nominal frequency $\binom{ \Delta f_i }{f_n}$	±0.03%
Frequency Response Deadband in mHz	0 (mHz)
Droop (%)	3 – 5%

Table 6.3.7.3.3(a) – Parameters for **Active Power Frequency** response in **Frequency Sensitive Mode** including the mathematical expressions in Figure 6.3.7.3.3(a).

(ii) In satisfying the performance requirements specified in ECC.6.3.7.3(i) **EU Generators** in respect of each **Type C** and **Type D Power Generating Modules and DC Connected Power Park Module** should be aware:-

in the case of overfrequency, the **Active Power Frequency** response is limited by the **Minimum Regulating Level**,

in the case of underfrequency, the **Active Power Frequency** response is limited by the **Maximum Capacity**,

the actual delivery of **Active Power** frequency response depends on the operating and ambient conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) when this response is triggered, in particular limitations on operation near **Maximum Capacity** at low **Frequencies** as specified in ECC.6.3.3 and available primary energy sources.

The frequency control device (or speed governor) must also be capable of being set so that it operates with an overall speed **Droop** of between 3 – 5%. The **Frequency Response Deadband** and **Droop** must be able to be reselected repeatedly. For the avoidance of doubt, in the case of a **Power Park Module** (including **DC Connected Power Park Modules**) the speed **Droop** should be equivalent of a fixed setting between 3% and 5% applied to each **Power Park Unit** in service.

(iii) In the event of a **Frequency** step change, each **Type C** and **Type D Power Generating Module** and **DC Connected Power Park Module** shall be capable of activating full and stable **Active Power Frequency** response (without undue power oscillations), in accordance with the performance characteristic shown in Figure 6.3.7.3.3(b) and parameters in Table 6.3.7.3.3(b).

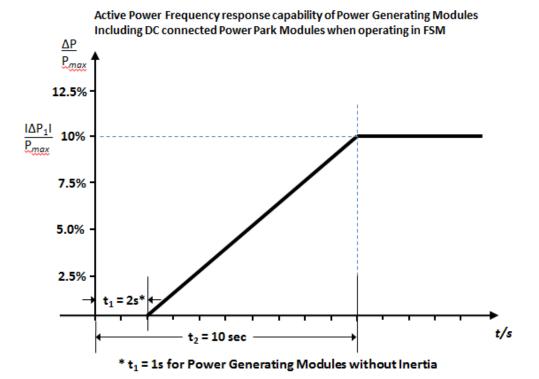


Figure 6.3.7.3.3(b) Active Power Frequency Response capability.

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $(\frac{ \Delta P_1 }{P_{max}})$	10%
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) with inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	2 seconds
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) which do not contribute to System inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	1 second
Activation time t ₂	10 seconds

Table 6.3.7.3.3(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change. Table 6.3.7.3.3(b) also includes the mathematical expressions used in Figure 6.3.7.3.3(b).

- (iv) The initial activation of Active Power Primary Frequency response shall not be unduly delayed. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) with inertia the delay in initial Active Power Frequency response shall not be greater than 2 seconds. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) without inertia, the delay in initial Active Power Frequency response shall not be greater than 1 second. If the Generator cannot meet this requirement they shall provide technical evidence to The Company demonstrating why a longer time is needed for the initial activation of Active Power Frequency response.
- (v) in the case of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);

ECC.6.3.7.3.4 **HVDC Systems** shall also meet the following minimum requirements:

(i) **HVDC Systems** shall be capable of responding to **Frequency** deviations in each connected AC **System** by adjusting their **Active Power** import or export as shown in Figure 6.3.7.3.4(a) with the corresponding parameters in Table 6.3.7.3.4(a).

Active Power Frequency response capability of HVDC systems when operating in FSI

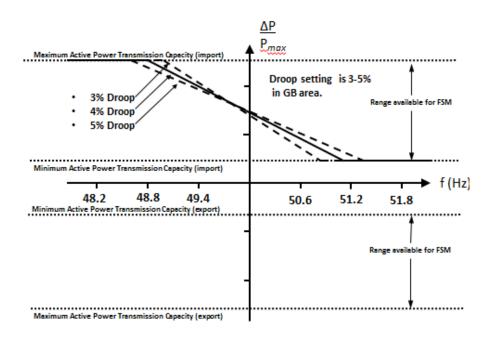


Figure 6.3.7.3.4(a) – **Active Power** frequency response capability of a **HVDC System** operating in **Frequency Sensitive Mode** (FSM). ΔP is the change in active power output from the **HVDC System**..

Parameter	Setting
Frequency Response Deadband	0

Droop S1 and S2 (upward and downward regulation) where S1=S2.	3 – 5%
Frequency Response Insensitivity	±15mHz

Table 6.3.7.3.4(a) – Parameters for **Active Power Frequency** response in **FSM** including the mathematical expressions in Figure 6.3.7.3.4.

- (ii) Each **HVDC System** shall be capable of adjusting the **Droop** for both upward and downward regulation and the **Active Power** range over which **Frequency Sensitive Mode** of operation is available as defined in ECC.6.3.7.3.4.
- (iii) In addition to the requirements in ECC.6.3.7.4(i) and ECC.6.3.7.4(ii) each **HVDC** System shall be capable of:-

delivering the response as soon as technically feasible

delivering the response on or above the solid line in Figure 6.3.7.3.4(b) in accordance with the parameters shown in Table 6.3.7.3.4(b)

initiating the delivery of **Primary Response** in no less than 0.5 seconds unless otherwise agreed with **The Company**. Where the initial delay time (t_1 – as shown in Figure 6.3.7.3.4(b)) is longer than 0.5 seconds the **HVDC Converter Station Owner** shall reasonably justify it to **The Company**.

Active Power Frequency response capability of HVDC Systems when operating in FSM

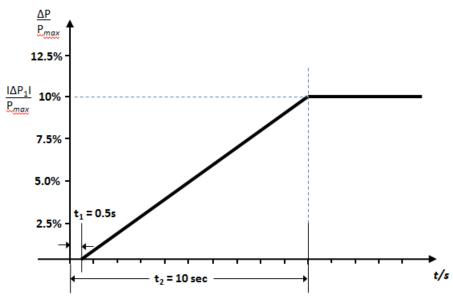


Figure 6.3.7.3.4(b) Active Power Frequency Response capability of a HVDC System. ΔP is the change in Active Power triggered by the step change in frequency

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $(\frac{ \Delta P_1 }{P_{max}})$	10%
Maximum admissible delay t ₁	0.5 seconds

Maximum admissible time for full	10 seconds
activation t ₂ , unless longer activation	
times are agreed with The Company	

Table 6.3.7.3.4(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change.

- (iv) For HVDC Systems connecting various Synchronous Areas, each HVDC System shall be capable of adjusting the full Active Power Frequency Response when operating in Frequency Sensitive Mode at any time and for a continuous time period. In addition, the Active Power controller of each HVDC System shall not have any adverse impact on the delivery of frequency response.
- ECC.6.3.7.3.5 For HVDC Systems and Type C and Type D Power Generating Modules (including DC Connected Power Park Modules), other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);
 - (i) With regard to disconnection due to underfrequency, **EU Generators** responsible for **Type C** and **Type D Power Generating Modules** (including **DC Connected Power Park Modules**) capable of acting as a load, including but not limited to **Pumped Storage** and tidal **Power Generating Modules**, **HVDC Systems** and **Remote End HVDC Converter Stations**, shall be capable of disconnecting their load in case of underfrequency which will be agreed with **The Company**. For the avoidance of doubt this requirement does not apply to station auxiliary supplies; **EU Generators** in respect of **Type C** and **Type D Pumped Storage Power Generating Modules** should also be aware of the requirements in OC.6.6.6.
 - (ii) Where a Type C or Type D Power Generating Module, DC Connected Power Park Module or HVDC System becomes isolated from the rest of the Total System but is still supplying Customers, the Frequency control device (or speed governor) must also be able to control System Frequency below 52Hz unless this causes the Type C or Type D Power Generating Module or DC Connected Power Park Module to operate below its Minimum Regulating Level or Minimum Active Power Transmission Capacity when it is possible that it may, as detailed in BC 3.7.3, trip after a time. For the avoidance of doubt Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems are only required to operate within the System Frequency range 47 52 Hz as defined in ECC.6.1.2 and for converter based technologies, the remaining island contains sufficient fault level for effective commutation;
 - (iii) Each **Type C** and **Type D Power Generating Module** and **HVDC Systems** shall have the facility to modify the **Target Frequency** setting either continuously or in a maximum of 0.05Hz steps over at least the range 50 ±0.1Hz should be provided in the unit load controller or equivalent device.
- ECC.6.3.7.3.6 In addition to the requirements of ECC.6.3.7.3 each **Type C** and **Type D Power Generating**Module and HVDC System shall be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix A3.
- ECC.6.3.7.3.7 For the avoidance of doubt, the requirements of Appendix A3 do not apply to **Type A** and **Type B Power Generating Modules**.
- ECC.6.3.7.3.8 Frequency control device (or speed governor) requirements during System Restoration

- Restoration Contractors shall be capable of operating their Generating Units or Power Generating Modules or HVDC Systems such that the Frequency control device (or turbine speed governor) and unit load controller or equivalent control device can be switched to Frequency control only with no load influence, during the early stages of a System Restoration whilst in island operation.
- Generators and HVDC System Owners shall advise The Company of the capability of operating their Generating Units or Power Generating Modules or HVDC Systems such that the Frequency control device (or turbine speed governor) and unit load controller or equivalent control device can be switched to Frequency control only with no load influence during the early stages of System Restoration whilst in island operation. If there is a suitable capability, The Company and the User shall agree on how it shall be used and kept available.
- ECC.6.3.7.8.3.3 In addition to the requirements of ECC.6.3.7.8.3.1 and ECC.6.3.7.8.3.2 the following shall apply:-
 - (i) Changes to any control schemes and settings identified from ECC.6.3.7.8.3.1, and ECC.6.3.7.8.3.2 shall be agreed between The Company and/or Relevant Transmission Licensee and/or Network Operator as recorded in the Restoration Plan.
 - (ii) During System Restoration, any changes to the schemes and settings defined in ECC.6.3.7.8.3.1 and ECC.6.3.7.8.3.2, of the different control devices of the Generating Unit or Power Generating Module or Restoration Contractor's Plant or HVDC System shall be coordinated and agreed between the Relevant Transmission Licensee, the EU Generator, Restoration Contractor and HVDC System Owner as part of a Restoration Plan.
- ECC.6.3.8 EXCITATION AND VOLTAGE CONTROL PERFORMANCE REQUIREMENTS
- ECC.6.3.8.1 <u>Excitation Performance Requirements for Type B Synchronous Power Generating Modules</u>
- ECC.6.3.8.1.1 Each Synchronous Generating Unit within a Type B Synchronous Power Generating Module shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Type B Synchronous Power Generating Module.
- In addition to the requirements of ECC.6.3.8.1.1, **The Company** or the relevant **Network Operator** will specify if the control system of the **Type B Synchronous Power Generating Module** shall contribute to voltage control or **Reactive Power** control or **Power Factor** control at the **Grid Entry Point** or **User System Entry Point** (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between **The Company** and/or the relevant **Network Operator** and the **EU Generator**.
- ECC.6.3.8.2 <u>Voltage Control Requirements for Type B Power Park Modules</u>
- The Company or the relevant Network Operator will specify if the control system of the Type B Power Park Module shall contribute to voltage control or Reactive Power control or Power Factor control at the Grid Entry Point or User System Entry Point (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between The Company and/or the relevant Network Operator and the EU Generator.
- ECC.6.3.8.3 <u>Excitation Performance Requirements for Type C and Type D Onshore Synchronous Power Generating Modules</u>

- ECC.6.3.8.3.1 Each Synchronous Generating Unit within a Type C and Type D Onshore Synchronous Power Generating Modules shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.
- ECC.6.3.8.3.2 The requirements for excitation control facilities are specified in ECC.A.6. Any site specific requirements shall be specified by **The Company** or the relevant **Network Operator**.
- Unless otherwise required for testing in accordance with OC5.A.2, the automatic excitation control system of an **Onshore Synchronous Power Generating Module** shall always be operated such that it controls the **Onshore Synchronous Generating Unit** terminal voltage to a value that is
 - equal to its rated value: or
 - only where provisions have been made in the Bilateral Agreement, greater than its rated value.
- In particular, other control facilities including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the excitation or voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in **BC2**.
- ECC.6.3.8.3.5 The excitation performance requirements for **Offshore Synchronous Power Generating Modules** with an **Offshore Grid Entry Point** shall be specified by **The Company**.
- ECC.6.3.8.4 <u>Voltage Control Performance Requirements for Type C and Type D Onshore Power Park</u>

 <u>Modules, Onshore HVDC Converters and OTSUW Plant and Apparatus at the Interface Point</u>
- ECC.6.3.8.4.1 Each Type C and Type D Onshore Power Park Module, Onshore HVDC Converter and OTSDUW Plant and Apparatus shall be fitted with a continuously acting automatic control system to provide control of the voltage at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus) without instability over the entire operating range of the Onshore Power Park Module, or Onshore HVDC Converter or OTSDUW Plant and Apparatus. Any Plant or Apparatus used in the provisions of such voltage control within an Onshore Power Park Module may be located at the Power Park Unit terminals, an appropriate intermediate busbar or the Grid Entry Point or User System Entry Point. In the case of an Onshore HVDC Converter at a HVDC Converter Station any Plant or Apparatus used in the provisions of such voltage control may be located at any point within the User's Plant and Apparatus including the Grid Entry Point or User System Entry Point. OTSDUW Plant and Apparatus used in the provision of such voltage control may be located at the Offshore Grid Entry Point an appropriate intermediate busbar or at the Interface Point. When operating below 20% Maximum Capacity the automatic control system may continue to provide voltage control using any available reactive capability. If voltage control is not being provided, the automatic control system shall be designed to ensure a smooth transition between the shaded area below 20% of Active Power output and the non-shaded area above 20% of Active Power output in Figure ECC.6.3.2.4(c) and Figure ECC.6.3.2.6(b) The performance requirements for a continuously acting automatic voltage control system that shall be complied with by the User in respect of Onshore Power Park Modules, Onshore HVDC Converters at an Onshore HVDC Converter Station, OTSDUW Plant and Apparatus at the Interface Point are defined in ECC.A.7.

- In particular, other control facilities, including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in BC2. Where **Reactive Power** output control modes and constant **Power Factor** control modes have been fitted within the voltage control system they shall be required to satisfy the requirements of ECC.A.7.3 and ECC.A.7.4.
- ECC.6.3.8.5 Excitation Control Performance requirements applicable to AC Connected Offshore

 Synchronous Power Generating Modules and voltage control performance requirements applicable to AC connected Offshore Power Park Modules, DC Connected Power Park Modules and Remote End HVDC Converters
- A continuously acting automatic control system is required to provide control of Reactive Power (as specified in ECC.6.3.2.5 and ECC.6.3.2.6) at the Offshore Grid Entry Point (or HVDC Interface Point in the case of Configuration 1 DC Connected Power Park Modules and Remote End HVDC Converters) without instability over the entire operating range of the AC connected Offshore Synchronous Power Generating Module or Configuration 1 AC connected Offshore Power Park Module or Configuration 1 DC Connected Power Park Modules or Remote End HVDC Converter. The performance requirements for this automatic control system will be specified by The Company which would be consistent with the requirements of ECC.6.3.2.5 and ECC.6.3.2.6.
- A continuously acting automatic control system is required to provide control of Reactive Power (as specified in ECC.6.3.2.8) at the Offshore Grid Entry Point (or HVDC Interface Point in the case of Configuration 2 DC Connected Power Park Modules) without instability over the entire operating range of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Modules. otherwise the requirements of ECC.6.3.2.6 shall apply. The performance requirements for this automatic control system are specified in ECC.A.8
- ECC.6.3.8.5.3 In addition to ECC.6.3.8.5.1 and ECC.6.3.8.5.2 the requirements for excitation or voltage control facilities, including **Power System Stabilisers**, where these are necessary for system reasons, will be specified by **The Company**. Reference is made to on-load commissioning witnessed by **The Company** in BC2.11.2.

ECC.6.3.9 STEADY STATE LOAD INACCURACIES

The standard deviation of **Load** error at steady state **Load** over a 30 minute period must not exceed 2.5 per cent of a **Type C** or **Type D Power Generating Modules** (including a **DC Connected Power Park Module**) **Maximum Capacity**. Where a **Type C** or **Type D Power Generating Module** (including a **DC Connected Power Park Module**) is instructed to **Frequency** sensitive operation, allowance will be made in determining whether there has been an error according to the governor droop characteristic registered under the **PC**.

For the avoidance of doubt in the case of a **Power Park Module** (excluding a **Non-Synchronous Electricity Storage Module**) an allowance will be made for the full variation of mechanical power output.

In the case of an **Electricity Storage Module**, an allowance will be made for the storage reserve capability of the **Electricity Storage Module**.

ECC.6.3.10 NEGATIVE PHASE SEQUENCE LOADINGS

ECC.6.3.10.1 In addition to meeting the conditions specified in ECC.6.1.5(b), each **Synchronous Power Generating Module** will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by **System Back-Up Protection** on the **National Electricity Transmission System** or **User System** located **Onshore** in which it is **Embedded**.

ECC.6.3.11 NEUTRAL EARTHING

- At nominal **System** voltages of 110kV and above the higher voltage windings of a transformer of a **Power Generating Module** or **HVDC Equipment** or transformer resulting from **OTSDUW** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph ECC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 110kV and above.
- ECC.6.3.12 FREQUENCY AND VOLTAGE DEVIATIONS
- ECC.6.3.12.1 As stated in ECC.6.1.2, the **System Frequency** could rise to 52Hz or fall to 47Hz. Each **Power Generating Module** (including **DC Connected Power Park Modules**) must continue to operate within this **Frequency** range for at least the periods of time given in ECC.6.1.2 unless **The Company** has specified any requirements for combined **Frequency** and voltage deviations which are required to ensure the best use of technical capabilities of **Power Generating Modules** (including **DC Connected Power Park Modules**) if required to preserve or restore system security.- Notwithstanding this requirement, **EU Generators** should also be aware of the requirements of ECC.6.3.13.
- ECC.6.3.13 <u>FREQUENCY, RATE OF CHANGE OF FREQUENCY AND VOLATGE PROTECTION SETTING ARRANGEMENTS</u>
- ECC.6.3.13.1 EU Generators (including in respect of OTSDUW Plant and Apparatus) and HVDC System Owners will be responsible for protecting all their Power Generating Modules (and OTSDUW Plant and Apparatus) or HVDC Equipment against damage should Frequency excursions outside the range 52Hz to 47Hz ever occur. Should such excursions occur, it is up to the EU Generator or HVDC System Owner to decide whether to disconnect their Apparatus for reasons of safety of Apparatus, Plant and/or personnel.
- ECC.6.3.13.2 Each **Power Park Module** with a **Grid Forming Capability** as provided for in ECC.6.3.19, when connected and synchronised to the **System**, is required to be capable of withstanding without tripping a rate of change of **Frequency** up to and including 2 Hz per second as measured over a rolling 500 milliseconds period. All other **Power Generating Modules** when connected and synchronised to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including 1 Hz per second as measured over a rolling 500 milliseconds period. Voltage dips may cause localised rate of change of **Frequency** values in excess of 1 Hz per second (or 2Hz/s in the case of **Power Park Modules** with a **Grid Forming Capability**) for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **Power Generating Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- ECC.6.3.13.3 Each HVDC System and Remote End HVDC Converter Station when connected and synchronised to the System, shall be capable of withstanding without tripping a rate of change of Frequency up to and including ±2.5Hz per second as measured over the previous 1 second period. Voltage dips may cause localised rate of change of Frequency values in excess of ±2.5 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of HVDC Systems and Remote End HVDC Converter Stations only and does not impose the need for rate of change of Frequency protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- ECC.6.3.13.4 Each **DC Connected Power Park Module** when connected to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including ±2.0Hz per second as measured over the previous 1 second period. **Voltage** dips may cause localised rate of change of **Frequency** values in excess of ±2.0 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **DC Connected Power Park Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.

As stated in ECC.6.1.2, the System Frequency could rise to 52Hz or fall to 47Hz and the System voltage at the Grid Entry Point or User System Entry Point could rise or fall within the values outlined in ECC.6.1.4. Each Type C and Type D Power Generating Module (including DC Connected Power Park Modules) or any constituent element must continue to operate within this Frequency range for at least the periods of time given in ECC.6.1.2 and voltage range as defined in ECC.6.1.4 unless The Company has agreed to any simultaneous overvoltage and underfrequency relays and/or simultaneous undervoltage and over frequency relays which will trip such Power Generating Module (including DC Connected Power Park Modules), and any constituent element within this Frequency or voltage range. In the case of Grid Forming Plant, Grid Forming Plant Owners are also required to satisfy the System Frequency and System voltage requirements as defined in ECC.6.3.19.

ECC.6.3.14 FAST START CAPABILITY

ECC.6.3.14.1 It may be agreed in the **Bilateral Agreement** that a **Genset** shall have a **Fast-Start Capability**. Such **Gensets** may be used for **Operating Reserve** and their **Start-Up** may be initiated by **Frequency**-level relays with settings in the range 49Hz to 50Hz as specified pursuant to **OC2**.

ECC.6.3.15 FAULT RIDE THROUGH

- ECC.6.3.15.1 General Fault Ride Through requirements, principles and concepts applicable to Type B,

 Type C and Type D Power Generating Modules and OTSDUW Plant and Apparatus

 subject to faults up to 140ms in duration
- ECC.6.3.15.1.1 ECC.6.3.15.8 section sets out the **Fault Ride Through** requirements on **Type B**, **Type C** and **Type D Power Generating Modules**, **OTSDUW Plant and Apparatus** and **HVDC Equipment** that shall apply in the event of a fault lasting up to 140ms in duration.
- ECC.6.3.15.1.2 Each Power Generating Module, Power Park Module, HVDC Equipment and OTSDUW Plant and Apparatus is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Grid Entry Point or User System Entry Point or (HVDC Interface Point in the case of Remote End DC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) remains on or above the heavy black line defined in sections ECC.6.3.15.2 ECC.6.3.15.7 below. For up to 30 minutes following such a fault event each Power Generating Module, Power Park Module, HVDC Equipment and OTSDUW Plant and Apparatus is required to remain connected and stable provided System operating conditions have returned within those specified in ECC.6.1.
- The voltage against time curves defined in ECC.6.3.15.2 ECC.6.3.15.7 expresses the lower limit (expressed as the ratio of its actual value and its reference 1pu) of the actual course of the phase to phase voltage (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the System voltage level at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.
- ECC.6.3.15.2 <u>Voltage against time curve and parameters applicable to **Type B Synchronous Power Generating Modules**</u>

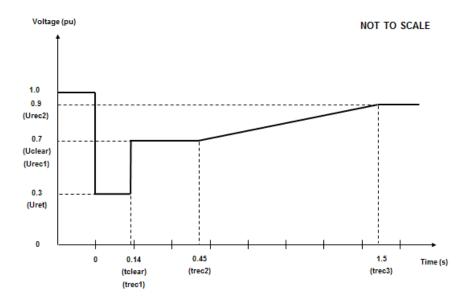


Figure ECC.6.3.15.2 - Voltage against time curve applicable to **Type B Synchronous Power Generating Modules**

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.3	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.2 Voltage against time parameters applicable to **Type B Synchronous Power Generating Modules**

ECC.6.3.15.3 Voltage against time curve and parameters applicable to Type C and D Synchronous Power Generating Modules connected below 110kV

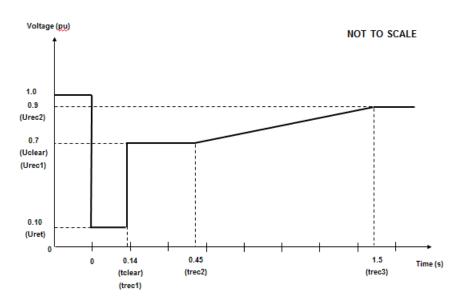


Figure ECC.6.3.15.3 - Voltage against time curve applicable to Type C and D Synchronous Power Generating Modules connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.1	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

ECC.6.3.15.4 Voltage against time curve and parameters applicable to Type D Synchronous Power Generating Modules connected at or above 110kV

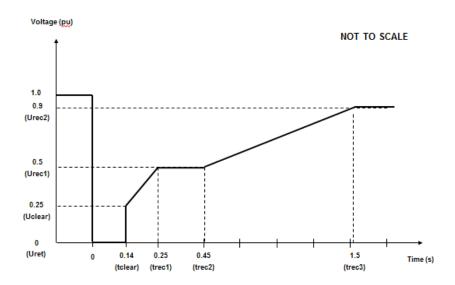


Figure ECC.6.3.15.4 - Voltage against time curve applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0.25	trec1	0.25
Urec1	0.5	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.4 Voltage against time parameters applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

ECC.6.3.15.5 Voltage against time curve and parameters applicable to **Type B**, **C** and **D Power Park**Modules connected below 110kV

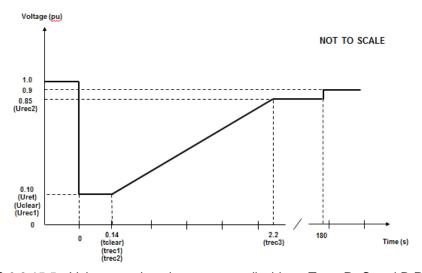


Figure ECC.6.3.15.5 - Voltage against time curve applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.10	tclear	0.14

Uclear	0.10	trec1	0.14
Urec1	0.10	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.5 Voltage against time parameters applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

Voltage against time curve and parameters applicable to Type D Power Park Modules with a Grid Entry Point or User System Entry Point at or above 110kV, DC Connected Power Park Modules at the HVDC Interface Point or OTSDUW Plant and Apparatus at the Interface Point.

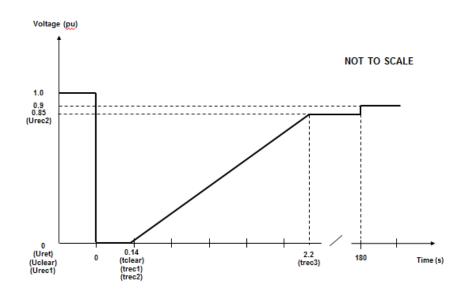


Figure ECC.6.3.15.6 - Voltage against time curve applicable to Type D Power Park Modules with a Grid Entry Point or User System Entry Point at or above 110kV, DC Connected Power Park Modules at the HVDC Interface Point or OTSDUW Plant and Apparatus at the Interface Point.

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.6 Voltage against time parameters applicable to a **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.

ECC.6.3.15.7 <u>Voltage against time curve and parameters applicable to HVDC Systems and Remote End HVDC Converter Stations</u>

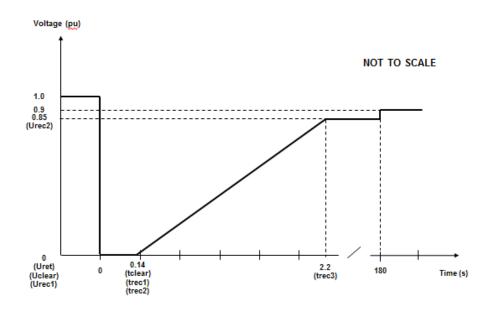


Figure ECC.6.3.15.7 - Voltage against time curve applicable to HVDC Systems and Remote End HVDC Converter Stations

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.7 Voltage against time parameters applicable to **HVDC Systems** and **Remote End HVDC**Converter Stations

ECC.6.3.15.8 In addition to the requirements in ECC.6.3.15.1 – ECC.6.3.15.7:

- (i) Each Type B, Type C and Type D Power Generating Module at the Grid Entry Point or User System Entry Point, HVDC Equipment (or OTSDUW Plant and Apparatus at the Interface Point) shall be capable of satisfying the above requirements when operating at Rated MW output and maximum leading Power Factor.
- (ii) The Company will specify upon request by the User the pre-fault and post fault short circuit capacity (in MVA) at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a remote end HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus).
- (iii) The pre-fault voltage shall be taken to be 1.0pu and the post fault voltage shall not be less than 0.9pu.
- (iv) To allow a User to model the Fault Ride Through performance of its Type B, Type C and/or Type D Power Generating Modules or HVDC Equipment, The Company will provide additional network data as may reasonably be required by the EU Code User to undertake such study work in accordance with PC.A.8. Alternatively, The Company may provide generic values derived from typical cases.
- (v) **The Company** will publish fault level data under maximum and minimum demand conditions in the **Electricity Ten Year Statement**.

- Each EU Generator (in respect of Type B, Type C, Type D Power Generating (vi) Modules and DC Connected Power Park Modules) and HVDC System Owners (in respect of HVDC Systems) shall satisfy the requirements in ECC.6.3.15.8(i) -(vii) unless the protection schemes and settings for internal electrical faults trips the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) from the System. The protection schemes and settings should not jeopardise Fault Ride Through performance as specified in ECC.6.3.15.8(i) – (vii). The undervoltage protection at the **Grid Entry Point** or User System Entry Point (or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) shall be set by the EU Generator (or HVDC System Owner or OTSDUA in the case of OTSDUW Plant and Apparatus) according to the widest possible range unless The Company and the EU Code User have agreed to narrower settings. All protection settings associated with undervoltage protection shall be agreed between the EU Generator and/or HVDC System Owner with The Company and Relevant Transmission Licensee's and relevant Network Operator (as applicable).
- (vii) Each Type B, Type C and Type D Power Generating Module, HVDC System and OTSDUW Plant and Apparatus at the Interface Point shall be designed such that upon clearance of the fault on the Onshore Transmission System and within 0.5 seconds of restoration of the voltage at the Grid Entry Point or User System Entry Point or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus to 90% of nominal voltage or greater, Active Power output (or Active Power transfer capability in the case of OTSDW Plant and Apparatus or Remote End HVDC Converter Stations) shall be restored to at least 90% of the level immediately before the fault. Once Active Power output (or Active Power transfer capability in the case of OTSDUW Plant and Apparatus or Remote End HVDC Converter Stations) has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - The total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - The oscillations are adequately damped.
 - In the event of power oscillations, Power Generating Modules shall retain steady state stability when operating at any point on the Power Generating Module Performance Chart.

For AC Connected **Onshore** and **Offshore Power Park Modules** comprising switched reactive compensation equipment (such as mechanically switched capacitors and reactors), such switched reactive compensation equipment shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

- ECC.6.3.15.9 General Fault Ride Through requirements for faults in excess of 140ms in duration.
- ECC.6.3.15.9.1 General Fault Ride Through requirements applicable to HVDC Equipment and OTSDUW DC Converters subject to faults and voltage dips in excess of 140ms.
- ECC.6.3.15.9.1.1 The requirements applicable to HVDC Equipment including OTSDUW DC Converters subject to faults and voltage disturbances at the Grid Entry Point or User System Entry Point or Interface Point or HVDC Interface Point, including Active Power transfer capability shall be specified in the Bilateral Agreement.
- ECC.6.3.15.9.2 Fault Ride Through requirements for Type C and Type D Synchronous Power Generating

 Modules and Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus
 subject to faults and voltage disturbances on the Onshore Transmission System in excess
 of 140ms

- The Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules subject to faults and voltage disturbances on the Onshore Transmission System in excess of 140ms are defined in ECC.6.3.15.9.2.1(a) and the Fault Ride Through Requirements for Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances on the Onshore Transmission System greater than 140ms in duration are defined in ECC.6.3.15.9.2.1(b).
 - (a) Requirements applicable to **Synchronous Power Generating Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.1 – ECC.6.3.15.8 each **Synchronous Power Generating Module** shall:

(i) remain transiently stable and connected to the **System** without tripping of any **Synchronous Power Generating Module** for balanced **Supergrid Voltage** dips and associated durations on the **Onshore Transmission System** (which could be at the **Interface Point**) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(a) Appendix 4 and Figures EA.4.3.2(a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(a); and,

NOT TO SCALE

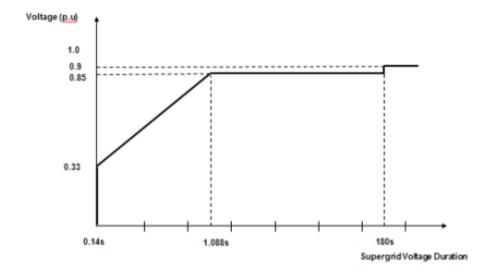


Figure ECC.6.3.15.9(a)

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Power Generating Modules) or Interface Point (for Offshore Synchronous Power Generating Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current (where the voltage at the Grid Entry Point is outside the limits specified in ECC.6.1.4) without exceeding the transient rating limits of the Synchronous Power Generating Module and,
- (iii) restore **Active Power** output following **Supergrid Voltage** dips on the **Onshore Transmission System** as described in Figure ECC.6.3.15.9(a), within 1 second of restoration of the voltage to 1.0pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Synchronous Power Generating Modules or,

Interface Point for Offshore Synchronous Power Generating Modules or,

User System Entry Point for Embedded Onshore Synchronous Power Generating Modules

or,

User System Entry Point for Embedded Medium Power Stations not subject to a Bilateral Agreement which comprise Synchronous Generating Units and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

- (iv) For up to 30 minutes following such a **Supergrid Voltage** dip on the **Onshore Transmission System** each **Synchronous Power Generating Module** is required to remain connected and stable provided **System** operating conditions have returned within those specified in ECC.6.1
- (b) Requirements applicable to Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus (excluding OTSDUW DC Converters) subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.5, ECC.6.3.15.6 and ECC.6.3.15.8 (as applicable) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the **System** without tripping of any **OTSDUW Plant and Apparatus**, or **Power Park Module** and / or any constituent **Power Park Unit**, for balanced **Supergrid Voltage** dips and associated durations on the **Onshore Transmission System** (which could be at the **Interface Point**) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(b). Appendix 4 and Figures EA.4.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(b); and,

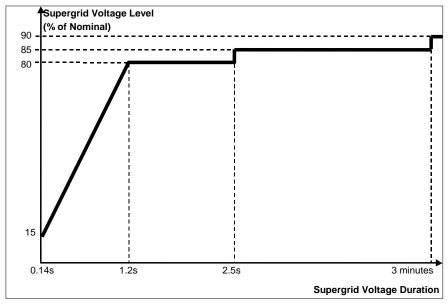


Figure ECC.6.3.15.9(b)

(ii) be required to satisfy the requirements of ECC.6.3.16. In the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure ECC.6.3.15.9(b) an allowance shall be made for the fall in input power and the

corresponding reduction of real and reactive current.

(iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(b), within 1 second of restoration of the voltage to 0.9 pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Interface Point for OTSDUW Plant and Apparatus and Offshore Power Park Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip except in the case of a Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure ECC.6.3.15.9(b) that restricts the Active Power output or, in the case of OTSDUW, Active Power transfer capability below this level. Once the Active Power output or, in the case of OTSDUW, Active Power transfer capability has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

(iv) For up to 30 minutes following such a **Supergrid Voltage** dip on the **Onshore Transmission System** each **Power Park Module** and / or any constituent **Power Park Unit** and **OTSDUW Plant and Apparatus** is required to remain connected and stable provided **System** operating conditions have returned within those specified in ECC.6.1.

ECC.6.3.15.10 Other Fault Ride Through Requirements

- (i) In the case of a Power Park Module (excluding Non-Synchronous Electricity Storage Modules), the requirements in ECC.6.3.15.9 do not apply when the Power Park Module (excluding Non-Synchronous Electricity Storage Modules) is operating at less than 5% of its Rated MW or during very high primary energy source conditions when more than 50% of the Power Park Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in ECC.6.1.5(b) and ECC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.

- (iii) Generators in respect of Type B, Type C and Type D Power Park Modules and HVDC System Owners are required to confirm to The Company, their repeated ability to operate through balanced and unbalanced faults and System disturbances each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. Demonstration of this capability would be satisfied by EU Generators and HVDC System Owners supplying the protection settings of their plant, informing The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating; and
- (iv) Notwithstanding the requirements of ECC.6.3.15(v), **Power Generating Modules** shall be capable of remaining connected during single phase or three phase auto-reclosures to the **National Electricity Transmission System** and operating without power reduction as long as the voltage and frequency remain within the limits defined in ECC.6.1.4 and ECC.6.1.2; and
- (v) For the avoidance of doubt the requirements specified in ECC.6.3.15 do not apply to **Power Generating Modules** connected to either an unhealthy circuit and/or islanded from the **Transmission System** even for delayed auto reclosure times.
- (vi) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) **Frequency** below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds

Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second. The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the Non-Synchronous Generating Units, or OTSDUW Plant and Apparatus.

ECC.6.3.15.11 <u>HVDC System Robustness</u>

- The HVDC System shall be capable of finding stable operation points with a minimum change in Active Power flow and voltage level, during and after any planned or unplanned change in the HVDC System or AC System to which it is connected. The Company shall specify the changes in the System conditions for which the HVDC Systems shall remain in stable operation.
- The HVDC System owner shall ensure that the tripping or disconnection of an HVDC Converter Station, as part of any multi-terminal or embedded HVDC System, does not result in transients at the Grid Entry Point or User System Entry Point beyond the limit specified by The Company in co-ordination with the Relevant Transmission Licensee.
- The **HVDC System** shall withstand transient faults on HVAC lines in the network adjacent or close to the **HVDC System**, and shall not cause any of the equipment in the **HVDC System** to disconnect from the network due to autoreclosure of lines in the **System**.
- ECC.6.3.15.11.4 The **HVDC System Owner** shall provide information to **The Company** on the resilience of the **HVDC System** to AC **System** disturbances.

ECC.6.3.16 FAST FAULT CURRENT INJECTION

ECC.6.3.16.1 General Fast Fault Current injection, principles and concepts applicable to Type B, Type

C and Type D Power Park Modules and HVDC Equipment

- In addition to the requirements of ECC.6.1.4, ECC.6.3.2, ECC.6.3.8 and ECC.A.7, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to satisfy the following requirements unless operating in a Grid Forming Capability mode in which case the requirements of ECC.6.3.19 shall apply instead. For the purposes of this requirement, current and voltage are assumed to be positive phase sequence values.
- For any balanced fault which results in the positive phase sequence voltage falling below the voltage levels specified in ECC.6.1.4 at the Grid Entry Point or User System Entry Point (if Embedded), each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall, as a minimum (unless an alternative type registered solution has otherwise been agreed with The Company), be required to inject a reactive current above the heavy black line shown in Figure ECC.16.3.16(a)

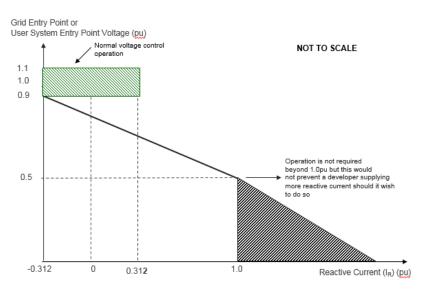


Figure ECC.6.3.16(a)

ECC.6.3.16.1.3 Figure ECC.6.3.16(a) defines the reactive current (I_R) to be supplied under a faulted condition which shall be dependent upon the pre-fault operating condition and the retained voltage at the **Grid Entry Point** or **User System Entry Point** voltage. For the avoidance of doubt, each **Power Park Module** (and any constituent element thereof) or **HVDC Equipment**, shall be required to inject a reactive current (I_R) which shall be not less than its pre-fault reactive current and which shall as a minimum increase with the fall in the retained voltage each time the voltage at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**) falls below 0.9pu whilst ensuring the overall rating of the **Power Park Module** (or constituent element thereof) or **HVDC Equipment** shall not be exceeded.

ECC.6.3.16.1.4 In addition to the requirements of ECC.6.3.16.1.2 and ECC.6.3.16.1.3, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to inject reactive current above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) which illustrates how the reactive current shall be injected over time from fault inception in which the value of I_R is determined from Figure ECC.6.3.16(a). In figures ECC.6.3.16(b) and ECC.6.3.16(c) ΔI_R is the value of the reactive current (I_R) less the prefault current. In this context fault inception is taken to be when the voltage at the Grid Entry Point or User System Entry Point falls below 0.9pu.

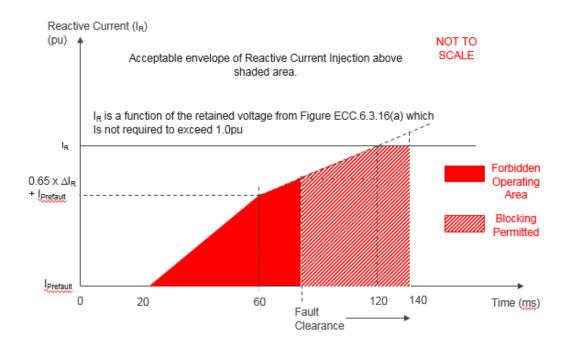


Figure ECC.16.3.16(b)

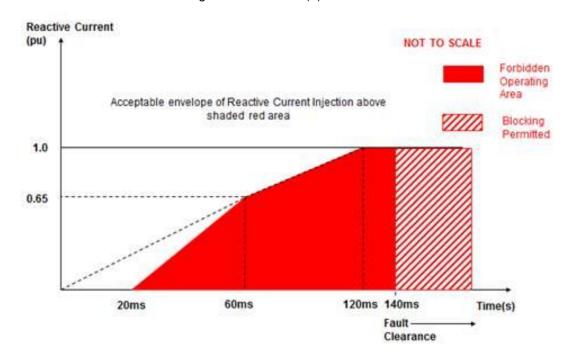


Figure ECC.16.3.16(c)

- ECC.6.3.16.1.5 The injected reactive current (I_R)shall be above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) with priority being given to reactive current injection with any residual capability being supplied as active current. Under any faulted condition, where the voltage falls outside the limits specified in ECC.6.1.4, there would be no requirement for each **Power Park Module** or constituent **Power Park Unit** or **HVDC Equipment** to exceed its transient or steady state rating of 1.0pu as defined in ECC.6.3.16.1.7.
- ECC.6.3.16.1.6 For any planned or switching events (as outlined in ECC.6.1.7 of the Grid Code) or unplanned events which results in temporary power frequency over voltages (TOV's), each Type B, Type C and Type D Power Generating Module or each Power Park Unit within a Type B, Type C or Type D Power Park Module or HVDC Equipment will be required to satisfy the transient overvoltage limits specified in the Bilateral Agreement.
- For the purposes of this requirement, the maximum rated current is taken to be the maximum current each Power Park Module (or the sum of the constituent Power Park Units which are connected to the System at the Grid Entry Point or User System Entry Point) or HVDC Converter is capable of supplying. In the case of a Power Park Module this would be the maximum rated current at the Grid Entry Point (or User System Entry Point if Embedded) when the Power Park Module is operating at rated Active Power and rated Reactive Power (as required under ECC.6.3.2) whilst operating over the nominal voltage range as required under ECC.6.1.4 at the Grid Entry Point (or User System Entry Point if Embedded). In the case of a Power Park Unit forming part of a Type B, Type C and Type D Power Park Module, the maximum rated current expected would be the maximum current supplied from each constituent Power Park Unit when the Power Park Module is operating at rated Active Power and rated Reactive Power over the nominal voltage operating range as defined in ECC.6.1.4 less the contribution from the reactive compensation equipment.

For example, in the case of a 100MW **Power Park Module** (consisting of 50 x 2MW Power Park Units and +10MVAr reactive compensation equipment) the **Rated Active Power** at the **Grid Entry Point** (or **User System Entry Point** if **Embedded**) would be taken as 100MW and the rated **Reactive Power** at the **Grid Entry Point** or (**User System Entry Point** if **Embedded**) would be taken as 32.8MVArs (ie **Rated MW** output operating at 0.95 **Power Factor** lead or 0.95 **Power Factor** lag as required under ECC.6.3.2.4). In this example, the maximum rating of each constituent **Power Park Unit** is obtained when the **Power Park**

Module is operating at 100MW, and +32.8MVAr less 10MVAr equal to 22.8MVAr or – 32.8MVAr (less the reactive compensation equipment component of 10MVAr (ie - 22.8MVAr) when operating within the normal voltage operating range as defined under ECC.6.1.4 (allowing for any reactive compensation equipment or losses in the **Power Park Module** array network).

For the avoidance of doubt, the total current of 1.0pu would be assumed to be on the MVA rating of the **Power Park Module** or **HVDC Equipment** (less losses). Under all normal and abnormal conditions, the steady state or transient rating of the **Power Park Module** (or any constituent element including the **Power Park Units**) or **HVDC Equipment**, would not be required to exceed the locus shown in Figure 16.3.16(d).

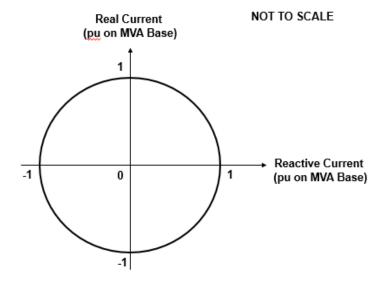


Figure ECC.16.3.16(d)

ECC.6.3.16.1.7

Each Type B, Type C and Type D Power Park Module or HVDC Equipment shall be designed to ensure a smooth transition between voltage control mode and fault ride through mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range as defined under ECC.6.1.4 and abnormal conditions where the retained voltage falls below 90% of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the Power Park Module or HVDC Equipment and its subsequent behaviour under faulted conditions. EU Generators and HVDC System Owners are required to both advise and agree with The Company the control strategy employed to mitigate the risk of such instability.

ECC.6.3.16.1.8

Each Type B, Type C and Type D Power Park Module or HVDC Equipment shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. EU Generators or HVDC System Owners shall be permitted to block or employ other means where the anticipated transient overvoltage would otherwise exceed the maximum permitted values specified in ECC.6.1.7. Figure ECC.16.3.16(b) and Figure ECC.16.3.16(c) shows the impact of variations in fault clearance time. For main protection operating times this would not exceed 140ms. The requirements for the maximum transient overvoltage withstand capability and associated time duration, shall be agreed between the EU Code User and The Company as part of the Bilateral Agreement. Where the EU Code User is able to demonstrate to The Company that blocking or other control strategies are required in order to prevent the risk of transient over voltage excursions as specified in ECC.6.3.16.1.5, EU Generators and HVDC System Owners are required to both advise and agree with The Company the control strategy, which must also include the approach taken to de-blocking

- In addition to the requirements of ECC.6.3.15, Generators in respect of Type B, Type C and Type D Power Park Modules or each Power Park Unit within a Type B, Type C and Type D Power Park Module or DC Connected Power Park Modules and HVDC System Owners in respect of HVDC Systems are required to confirm to The Company, their repeated ability to supply Fast Fault Current to the System each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. EU Generators and HVDC Equipment Owners should inform The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating.
- To permit additional flexibility for example from **Power Park Modules** made up of full converter machines, DFIG machines, induction generators or **HVDC Systems** or **Remote End HVDC Converters**, **The Company** will permit transient or marginal deviations below the shaded area shown in Figures ECC.16.3.16(b) or ECC.16.3.16(c) provided the injected reactive current supplied exceeds the area bound in Figure ECC.6.3.16(b) or ECC.6.3.16(c). Such agreement would be confirmed and agreed between **The Company** and **Generator**.
- ECC.6.3.16.1.11 In the case of a **Power Park Module** or **DC Connected Power Park Module**, where it is not practical to demonstrate the compliance requirements of ECC.6.3.16.1.1 to ECC.6.3.16.1.6 at the **Grid Entry Point** or **User System Entry Point**, **The Company** will accept compliance of the above requirements at the **Power Park Unit** terminals.
- For the avoidance of doubt, **Generators** in respect of **Type C** and **Type D Power Park Modules** and **OTSDUW Plant and Apparatus** are also required to satisfy the requirements of ECC.6.3.15.9.2.1(b) which specifies the requirements for fault ride through for voltage dips in excess of 140ms.
- ECC.6.3.16.1.13 In the case of an unbalanced fault, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to inject reactive current (IR) which shall as a minimum increase with the fall in the retained unbalanced voltage up to its maximum reactive current without exceeding the transient rating of the Power Park Module (or constituent element thereof) or HVDC Equipment.
- ECC.6.3.16.1.14 In the case of a unbalanced fault, the **Generator** or **HVDC System Owner** shall confirm to **The Company** their ability to prevent transient overvoltages arising on the remaining healthy phases and the control strategy employed.
- ECC.6.3.17 <u>SUBSYNCHRONOUS TORSIONAL INTERACTION DAMPING CAPABILITY, POWER OSCILLATION DAMPING CAPABILITY AND CONTROL FACILITIES FOR HVDC SYSTEMS</u>
- ECC.6.3.17.1 Subsynchronous Torsional Interaction Damping Capability
- ECC.6.3.17.1.1 HVDC System Owners, or Generators in respect of OTSDUW DC Converters or Network Operators in the case of an Embedded HVDC Systems not subject to a Bilateral Agreement must ensure that any of their Onshore HVDC Systems or OTSDUW DC Converters will not cause a sub-synchronous resonance problem on the Total System. Each HVDC System or OTSDUW DC Converter is required to be provided with sub-synchronous resonance damping control facilities. HVDC System Owners and EU Generators in respect of OTSDUW DC Converters should also be aware of the requirements in ECC.6.1.9 and ECC.6.1.10.
- ECC.6.3.17.1.2 Where specified in the **Bilateral Agreement**, each **OTSDUW DC Converter** is required to be provided with power oscillation damping or any other identified additional control facilities.

- ECC.6.3.17.1.3 Each HVDC System shall be capable of contributing to the damping of power oscillations on the National Electricity Transmission System. The control system of the HVDC System shall not reduce the damping of power oscillations. The Company in coordination with the Relevant Transmission Licensee (as applicable) shall specify a frequency range of oscillations that the control scheme shall positively damp and the System conditions when this occurs, at least accounting for any dynamic stability assessment studies undertaken by the Relevant Transmission Licensee or The Company (as applicable) to identify the stability limits and potential stability problems on the National Electricity Transmission System. The selection of the control parameter settings shall be agreed between The Company in coordination with the Relevant Transmission Licensee and the HVDC System Owner.
- ECC.6.3.17.1.4 **The Company** shall specify the necessary extent of SSTI studies and provide input parameters, to the extent available, related to the equipment and relevant system conditions on the **National Electricity Transmission System**. The SSTI studies shall be provided by the **HVDC System Owner**. The studies shall identify the conditions, if any, where SSTI exists and propose any necessary mitigation procedure. The responsibility for undertaking the studies in accordance with these requirements lies with the **Relevant Transmission Licensee** in co-ordination with **The Company**. All parties shall be informed of the results of the studies.
- ECC.6.3.17.1.5 All parties identified by **The Company** as relevant to each **Grid Entry Point** or **User System Entry Point** (if **Embedded**), including the **Relevant Transmission Licensee**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this data and, where applicable, pass it on to the party responsible for the studies in accordance with **Assimilated Law** (Article 10 of Commission Regulation (EU) 2016/1447). Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.1.6 **The Company** in coordination with the **Relevant Transmission Licensee** shall assess the result of the SSTI studies. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request that the **HVDC System Owner** perform further SSTI studies in line with this same scope and extent.
- ECC.6.3.17.1.7 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate the study. The **HVDC System Owner** shall provide **The Company** with all relevant data and models that allow such studies to be performed. Submission of this data to **Relevant Transmission Licensee's** shall be in accordance with the requirements of **Assimilated Law** (Article 10 of Commission Regulation (EU) 2016/1447).
- ECC.6.3.17.1.8 Any necessary mitigating actions identified by the studies carried out in accordance with paragraphs ECC.6.3.17.1.4 or ECC.6.3.17.1.6, and reviewed by **The Company** in coordination with the **Relevant Transmission Licensees**, shall be undertaken by the **HVDC System Owner** as part of the connection of the new **HVDC Converter Station**.
- ECC.6.3.17.1.9 As part of the studies and data flow in respect of ECC.6.3.17.1 ECC.6.3.17.8 the following data exchange would take place with the time scales being pursuant to the terms of the Bilateral Agreement.

Information supplied by The Company and Relevant Transmission Licensees

Studies provided by the User

User review

The Company review

Changes to studies and agreed updates between **The Company**, the **Relevant Transmission Licensee** and **User**

Final review

ECC.6.3.17.2 <u>Interaction between HVDC Systems or other User's Plant and Apparatus</u>

- ECC.6.3.17.2.1 Notwithstanding the requirements of ECC6.1.9 and ECC.6.1.10, when several HVDC Converter Stations or other User's Plant and Apparatus are within close electrical proximity, The Company may specify that a study is required, and the scope and extent of that study, to demonstrate that no adverse interaction will occur. If adverse interaction is identified, the studies shall identify possible mitigating actions to be implemented to ensure compliance with the requirements of ECC.6.1.9
- ECC.6.3.17.2.2 The studies shall be carried out by the connecting **HVDC System Owner** with the participation of all other **User's** identified by **The Company** in coordination with **Relevant Transmission Licensees** as relevant to each **Connection Point**.
- ECC.6.3.17.2.3 All **User's** identified by **The Company** as relevant to the connection, and where applicable **Relevant Transmission Licensee's**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this input and, where applicable, pass it on to the party responsible for the studies in accordance with **Assimilated Law** (Article 10 of Commission Regulation (EU) 2016/1447). Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.2.4 **The Company** in coordination with **Relevant Transmission Licensees** shall assess the result of the studies based on their scope and extent as specified in accordance with ECC.6.3.17.2.1. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request the **HVDC System Owner** to perform further studies in line with the scope and extent specified in accordance with ECC.6.3.17.2.1.
- ECC.6.3.17.2.5 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate some or all of the studies. The **HVDC System Owner** shall provide **The Company** all relevant data and models that allow such studies to be performed.
- ECC.6.3.17.2.6 The **EU Code User** and **The Company**, in coordination with the **Relevant Transmission Licensee**, shall agree any mitigating actions identified by the studies carried out following the site specific requirements and works, including any transmission reinforcement works and / or **User** works required to ensure that all sub-synchronous oscillations are sufficiently damped.
- ECC.6.1.17.3 Fast Recovery from DC faults
- ECC.6.1.17.3.1 **HVDC Systems**, including DC overhead lines, shall be capable of fast recovery from transient faults within the **HVDC System**. Details of this capability shall be subject to the **Bilateral Agreement** and the protection requirements specified in ECC.6.2.2.
- ECC.6.1.17.4 Maximum loss of Active Power
- ECC.6.1.14.4.1 An **HVDC System** shall be configured in such a way that its loss of **Active Power** injection in the **GB Synchronous Area** shall be in accordance with the requirements of the **SQSS**.
- ECC.6.3.18 SYSTEM TO GENERATOR OPERATIONAL INTERTRIPPING SCHEMES
- ECC.6.3.18.1 The Company may require that a System to Generator Operational Intertripping Scheme be installed as part of a condition of the connection of the EU Generator. Scheme specific details shall be included in the relevant Bilateral Agreement and shall, include the following information:
 - (1) the relevant category(ies) of the scheme (referred to as Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme and Category 4 Intertripping Scheme);
 - (2) the **Power Generating Module** to be either permanently armed or that can be instructed to be armed in accordance with BC2.8;
 - (3) the time within which the **Power Generating Module** circuit breaker(s) are to be automatically tripped;

(4) the location to which the trip signal will be provided by **The Company**. Such location will be provided by **The Company** prior to the commissioning of the **Power Generating Module**.

Where applicable, the **Bilateral Agreement** shall include the conditions on the **National Electricity Transmission System** during which **The Company** may instruct the **System to Generator Operational Intertripping Scheme** to be armed and the conditions that would initiate a trip signal.

ECC.6.3.18.2 The time within which the **Power Generating Module(s)** circuit breaker(s) need to be automatically tripped is determined by the specific conditions local to the **EU Generator**. This 'time to trip' (defined as the time from provision of the trip signal by **The Company** to the specified location, to circuit breaker main contact opening) can typically range from 100ms to 10sec. A longer time to trip may allow the initiation of an automatic reduction in the **Power Generating Module(s)** circuit breaker. Where applicable **The Company** may provide separate trip signals to allow for either a longer or shorter 'time to trip' to be initiated.

ECC.6.3.19 **GRID FORMING CAPABILITY**

- ECC.6.3.19.1 In order for the National Electricity Transmission System to satisfy the stability requirements defined in the National Electricity Transmission System Security and Quality of Supply Standards, it is an essential requirement that an appropriate volume of Grid Forming Plant is available and capable of providing a Grid Forming Capability.
- ECC.6.3.19.2 **Grid Forming Capability** is not a mandatory requirement but one which will be delivered through market arrangements, the details of which shall be published on **The Company's Website**. **Grid Forming Capability** can be implemented by any technology including **Electronic Power Converters** with a **GBGF- I** ability, rotating **Synchronous Generating Units** or a combination of the two.
- ECC.6.3.19.3 As noted in ECC.6.3.19.2, **Grid Forming Capability** is not a mandatory requirement, however where a **User** (be they a **GB Code User** or **EU Code User**) or **Non-CUSC Party** wishes to offer a **Grid Forming Capability**, then they will be required to ensure their **Grid Forming Plant** meets the following requirements.
 - (i) The Grid Forming Plant must fully comply with the applicable requirements of the Grid Code including but not limited to the Planning Code (PC), Connection Conditions (CC's) or European Connection Conditions (ECC's) (as applicable), Compliance Processes (CP's) or European Compliance Processes (ECP's) (as applicable), Operating Codes (OC's), Balancing Codes (BC's) and Data Registration Code (DRC).
 - (ii) Each **GBGF-I** shall be capable of behaving at the **Grid Entry Point** or **User System Entry Point** or terminals of individual unit(s) as **Internal Voltage Source** behind an impedance.
 - (iii) In addition to meeting the requirements of CC.6.3.15 or ECC.6.3.15, each **Grid** Forming Plant is required to remain in synchronism with the **Total System** and maintain a **Load Angle** whose value can vary between 0 and 90 degrees ($\pi/2$ radians).
 - (iv) When subject to a fault or disturbance, or System Frequency change, each Grid Forming Plant shall be capable of supplying Active ROCOF Response Power, Active Phase Jump Power, Active Damping Power, Active Control Based Power, Control Based Reactive Power, Voltage Jump Reactive Power and GBGF Fast Fault Current Injection.
 - (v) Each GBGF-I shall be capable of:-

- (a) Providing a symmetrical ability for importing and exporting Active ROCOF Response Power, Active Phase Jump Power, Active Damping Power and Active Control Based Power under both rising and falling System Frequency conditions. Such requirements will apply over the full System Frequency range as detailed in CC.6.1.2 and CC.6.1.3 or ECC.6.1.2 (as applicable). In satisfying these requirements, User's and Non-CUSC Parties should be aware of (but not limited to) the exclusions in CC.6.3.3, CC.6.3.7 and BC3.7.2.1 (as applicable for GB Code User's) or ECC.6.1.2, ECC.6.3.3, ECC.6.3.7 and BC3.7.2.1(b)(i) (as applicable for EU Code User's and Non-CUSC Parties) during System Frequencies between 47Hz 52Hz, excluding CC.6.1.3 or ECC.6.1,2.1,2 for a Grid Forming Plant with time limited output ratings. For the avoidance of doubt, an asymmetrical response is permissible as agreed with The Company when required to protect User's and Non-CUSC Parties Plant and Apparatus or asymmetry in energy availability.
- (b) Operating as a voltage source behind an impedance.
- (c) being designed so as not to cause any undue interactions which could cause damage to the **Total System** or other **User's Plant** and **Apparatus**.
- (d) include an Active Control Based Power part of the control system that can respond to changes in the Grid Forming Plant or external signals from the Total System available at the Grid Entry Point or User System Entry Point but with a bandwidth below 5 Hz to avoid AC System resonance problems.
- (e) meeting the requirements of ECC.6.3.13 irrespective of being owned or operated by a **GB Code User**, **EU Code User** or **Non-CUSC Party**.
- (f) GBGF-I with an importing capability mode of operation such as DC Converters, HVDC Systems and Electricity Storage Modules are required to have a predefined frequency response operating characteristic over the full import and export range which is contained within the envelope defined by the red and blue lines shown in Figure ECC.6.3.19.3. This characteristic shall be submitted to The Company. For the avoidance of doubt, Grid Forming Plants which are only capable of exporting Active Power to the Total System are only required to operate over the exporting power region

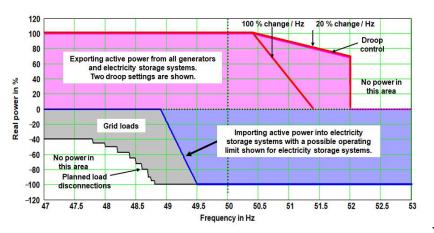
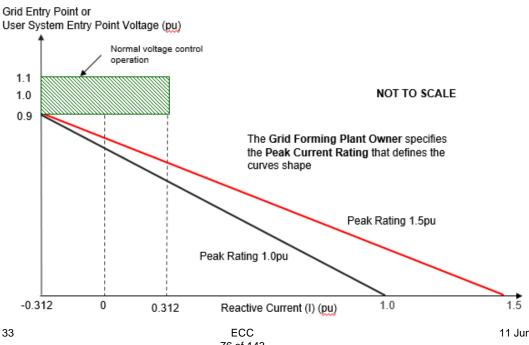


Figure ECC.6.3.19.3


(vi) Each User or Non-CUSC Party shall design their GBGF-I system with an equivalent Damping Factor of between 0.2 and 5.0. It is down to the User or Non-CUSC Party to determine the Damping Factor, whose value shall be agreed with The Company. It is typical for the Damping Factor to be less than 1.0, though this will be dependent upon the parameters of the Grid Forming Plant and the equivalent System impedance at the Grid Entry Point or User System Entry Point.

The output of the **Grid Forming Plant** shall be designed such that following a disturbance on the **System**, the **Active Power** output and **Reactive Power** output shall be adequately damped. The damping shall be judged to be adequate if the corresponding **Active Power** response to a disturbance decays with a response that is in line with the response of second order system that has the same equivalent **Damping Factor**.

- (vii) Each GBGF-I shall be designed so as not to interact and affect the operation, performance, safety or capability of other User's Plant and Apparatus connected to the Total System. To achieve this requirement, each User and Non-CUSC Party shall be required to submit the data required in PC.A.5.8
- ECC.6.3.19.4 In addition to the requirements of ECC.6.3.19.1 – ECC.6.3.19.3 each Grid Forming Plant shall also be capable of:
 - satisfying the requirements of ECC.6.3.19.5. (i)
 - (ii) operating at a minimum short circuit level of zero MVA at the Grid Entry Point or User System Entry Point.
 - (iii) providing any additional quality of supply requirements, including but not limited to reductions in the permitted frequency of Temporary Power System Over-voltage events (TOV's) and System Frequency bandwidth limitations, as agreed with The Company. Such requirements will be pursuant to the terms of the Bilateral Agreement. For the avoidance of doubt, this requirement is in addition the minimum quality of supply requirements detailed in CC.6.1.5, CC.6.1.6 and CC.6.1.7 (as applicable) or ECC.6.1.5, ECC.6.1.6 and ECC.6.1.7 (as applicable),

ECC.6.3.19.5 GBGF Fast Fault Current Injection

ECC.6.3.19.5.1 For any balanced fault which results in the positive phase sequence voltage falling below the voltage levels specified in CC.6.1.4 or ECC.6.1.4 (as applicable) at the Grid Entry Point or User System Entry Point (if Embedded), a Grid Forming Plant shall, as a minimum be required to inject a reactive current of at least their Peak Current Rating when the voltage at the Grid Entry Point or User System Entry Point drops to zero. For intermediate retained voltages at the Grid Entry Point or User System Entry Point, the injected reactive current shall be on or above a line drawn from the bottom left hand corner of the normal voltage control operating zone (shown in the rectangular green shaded area of Figure ECC.6.3.19.5(a)) and the specified Peak Current Rating at a voltage of zero at the Grid Entry Point or User System Entry Point as shown in Figure ECC.16.3.19.5(a). Typical examples of limit lines are shown in Figure ECC.16.3.19.5(a) for a Peak Current Rating of 1.0pu where the injected reactive current must be on or above the black line and a Peak Current Rating of 1.5pu where injected reactive current must be on or above the red line.

ECC.6.3.19.5.2 Figure ECC.6.3.19.5(a) defines the reactive current to be supplied under a faulted condition which shall be dependent upon the pre-fault operating condition and the retained voltage at the **Grid Entry Point** or **User System Entry Point** voltage. For the avoidance of doubt, each **Grid Forming Plant** (and any constituent element thereof), shall be required to inject a reactive current which shall be not less than its pre-fault reactive current and which shall as a minimum, increase each time the voltage at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**) falls below 0.9pu whilst ensuring the overall rating of the **Grid Forming Plant** (or constituent element thereof) shall not be exceeded.

ECC.6.3.19.5.3 In addition to the requirements of ECC.6.3.19.5.1 and ECC.6.3.19.5.2, each **Grid Forming**Plant shall be required to inject reactive current above the shaded area shown in Figure ECC.6.3.19.5(b) when the retained voltage at the **Grid Entry Point** or **User System Entry**Point falls to 0pu. Where the retained voltage at the **Grid Entry Point** or **User System Entry**Point is below 0.9pu but above 0pu (for example when significant active current is drawn by loads and/or resistive components arising from both local and remote faults or disturbances from other **Plant** and **Apparatus** connected to the **Total System**) the injected reactive current component shall be in accordance with Figure ECC.6.3.19.5(a).

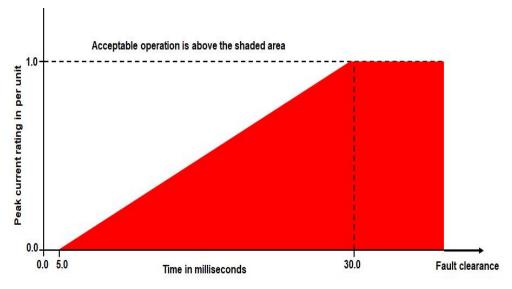


Figure ECC.6.3.19.5(b)

- ECC.6.3.19.5.4 The injected current shall be above the shaded area shown in Figure ECC.6.3.19.5(b) for the duration of the fault clearance time which for faults on the **Transmission System** cleared in **Main Protection** operating times shall be up to 140ms. Under any faulted condition, where the voltage falls outside the limits specified in CC.6.1.4 or ECC.6.1.4 (as applicable), there will be no requirement for each **Grid Forming Plant** or constituent part to exceed its transient or steady state rating as defined in Table PC.A.5.8.2.
- ECC.6.3.19.5.5 For any planned or switching events (as outlined in CC.6.1.7 or ECC.6.1.7 of the Grid Code) or unplanned events which results in Temporary Power **System** Over Voltages (TOV's), each **Grid Forming Plant** will be required to satisfy the transient overvoltage limits specified in the **Bilateral Agreement**.
- For the purposes of this requirement, the maximum rated current will be the **Peak Current**Rating declared by the **Grid Forming Plant Owner** in accordance with Table PC.A.5.8.2.

- ECC.6.3.19.5.7 Each **Grid Forming Plant** shall be designed to ensure a smooth transition between voltage control mode and **Fault Ride Through** mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range as defined under CC.6.1.4 or ECC.6.1.4 (as applicable) and abnormal conditions where the retained voltage falls below 90% of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the **Grid Forming Plant** and its subsequent behaviour under faulted conditions. **Grid Forming Plant Owners** are required to both advise and agree with **The Company** the control strategy employed to mitigate the risk of such instability.
- ECC.6.3.19.5.8. Each **Grid Forming Plant** shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. The requirements for the maximum transient overvoltage withstand capability and associated time duration, shall be agreed between the **User** or **Non-CUSC Party** and **The Company** as part of the **Bilateral Agreement**.
- ECC.6.3.19.5.9 In addition to the requirements of CC.6.3.15 or ECC.6.3.15, each **Grid Forming Plant**Owner is required to confirm to **The Company**, their repeated ability to supply **GBGF Fast**Fault Current Injection to the **System** each time the voltage at the **Grid Entry Point** or

 User **System Entry Point** falls outside the limits specified in CC.6.1.4 or ECC.6.1.4 (as applicable). **Grid Forming Plant Owners** should inform **The Company** of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating.
- ECC.6.3.19.5.10 In the case of a **Power Park Module** or **DC Connected Power Park Module**, where it is not practical to demonstrate the compliance requirements of ECC.6.3.19.5.1 to ECC.6.3.19.5.5 at the **Grid Entry Point** or **User System Entry Point**, **The Company** will accept compliance of the above requirements at the **Power Park Unit** terminals.
- ECC.6.3.19.5.11 In the case of an unbalanced fault, each **Grid Forming Plant**, shall be required to inject current which shall as a minimum increase with the fall in the unbalanced voltage without exceeding the transient **Peak Current Rating** of the **Grid Forming Plant** (or constituent element thereof).
- ECC.6.3.19.5.12 In the case of an unbalanced fault, the **User** or **Non-CUSC Party** shall confirm to **The Company** their ability to prevent transient overvoltages arising on the remaining healthy phases and the control strategy employed.
- ECC.6.4 <u>General Network Operator And Non-Embedded Customer Requirements</u>
- This part of the **Grid Code** describes the technical and design criteria and performance requirements for **Network Operators** and **Non-Embedded Customers**.

Neutral Earthing

At nominal **System** voltages of 132kV and above the higher voltage windings of three phase transformers and transformer banks connected to the **National Electricity Transmission System** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph ECC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

As explained under OC6, each Network Operator and Non Embedded Customer, will make arrangements that will facilitate automatic low Frequency Disconnection of Demand (based on Annual ACS Conditions). ECC.A.5.5. of Appendix E5 includes specifications of the local percentage Demand that shall be disconnected at specific frequencies. The manner in which Demand subject to low Frequency disconnection will be split into discrete MW blocks is specified in OC6.6. Technical requirements relating to Low Frequency Relays are also listed in Appendix E5.

Operational Metering

- Where The Company can reasonably demonstrate that an Embedded Medium Power Station or Embedded HVDC System has a significant effect on the National Electricity Transmission System, it may require the Network Operator within whose System the Embedded Medium Power Station or Embedded HVDC System is situated to ensure that the operational metering equipment described in ECC.6.5.6 is installed such that The Company can receive the data referred to in ECC.6.5.6. In the case of an Embedded Medium Power Station subject to, or proposed to be subject to a Bilateral Agreement, The Company shall notify such Network Operator of the details of such installation in writing within 3 months of being notified of the application to connect under CUSC and in the case of an Embedded Medium Power Station not subject to, or not proposed to be subject to a Bilateral Agreement in writing as a Site Specific Requirement in accordance with the timescales in CUSC 6.5.5. In either case the Network Operator shall ensure that the data referred to in ECC.6.5.6 is provided to The Company.
- ECC.6.4.5 Reactive Power Requirements at each EU Grid Supply Point
- At each EU Grid Supply Point, Non-Embedded Customers and Network Operators who are EU Code Users shall ensure their Systems are capable of steady state operation within the Reactive Power limits as specified in ECC.6.4.5.1(a) and ECC.6.4.5.1(b). Where The Company requires a Reactive Power range which is broader than the limits defined in ECC.6.4.5.1(a) and ECC.6.4.5.1(b), this will be agreed as a reasonable requirement through joint assessment between the relevant EU Code User and The Company and justified in accordance with the requirements of ECC.6.4.5.1(c), (d), (e) and (f). For Non-Embedded Customers who are EU Code Users, the Reactive Power range at each EU Grid Supply Point, under both importing and exporting conditions, shall not exceed 48% of the larger of the Maximum Import Capability or Maximum Export Capability (0.9 Power Factor import or export of Active Power), except in situations where either technical or financial system benefits are demonstrated for Non-Embedded Customers and accepted by The Company in coordination with the Relevant Transmission Licensee.
 - (a) For **Network Operators** who are **EU Code Users** at each **EU Grid Supply Point**, the **Reactive Power** range shall not exceed:
 - (i) 48 percent (i.e. 0.9 **Power Factor**) of the larger of the **Maximum Import Capability** or **Maximum Export Capability** during **Reactive Power** import (consumption); and
 - (ii) 48 percent (i.e. 0.9 **Power Factor**) of the larger of the **Maximum Import** Capability or **Maximum Export Capability** during **Reactive Power** export (production);

Except in situations where either technical or financial system benefits are proved by **The Company** in coordination with the **Relevant Transmission Licensee** and the relevant **Network Operator** through joint analysis.

(b) The Company in co-ordination with the Relevant Transmission Licensee shall agree with the Network Operator on the scope of the analysis, which shall determine the optimal solution for Reactive Power exchange between their Systems at each EU Grid Supply Point, taking adequately into consideration the specific System characteristics, variable structure of power exchange, bidirectional flows and the Reactive Power capabilities of the Network Operator's System. Any proposed solutions shall take the above issues into account and shall be agreed as a reasonable requirement through joint assessment between the relevant Network Operator or Non-Embedded Customer and The Company in coordination with the Relevant Transmission Licensee. In the event of a shared site between a GB Code User and EU Code User, the requirements would generally be allocated to each User on the basis of their Demand in the case of a Network Operator who is a GB Code User and applied on the basis of the Maximum Import Capability or Maximum Export Capability as specified in ECC.6.4.5.1 in the case of a Network Operator who is an EU Code User.

- (c) The Company in coordination with the Relevant Transmission Licensee may specify the Reactive Power capability range at the EU Grid Supply Point in another form other than Power Factor.
- (d) Notwithstanding the ability of **Network Operators** or **Non Embedded Customers** to apply for a derogation from ECC.6.4.5.1 (e), where an **EU Grid Supply Point** is shared between a **Power Generating Module** and a **Non-Embedded Customers System**, the **Reactive Power** range would be apportioned to each **EU Code User** at their **Connection Point**.
- Where agreed with the **Network Operator** who is an **EU Code User** and justified though appropriate **System** studies, **The Company** may reasonably require the **Network Operator** not to export **Reactive Power** at the **EU Grid Supply Point** (at nominal voltage) at an **Active Power** flow of less than 25 % of the **Maximum Import Capability**. Where applicable, the **Authority** may require **The Company** in coordination with the **Relevant Transmission Licensee** to justify its request through a joint analysis with the relevant **Network Operator** and demonstrate that any such requirement is reasonable. If this requirement is not justified based on the joint analysis, **The Company** in coordination with the **Relevant Transmission Licensee** and the **Network Operator** shall agree on necessary requirements according to the outcomes of a joint analysis.
- Notwithstanding the requirements of ECC.6.4.5.1(b) and subject to agreement between The Company and the relevant Network Operator there may be a requirement to actively control the exchange of Reactive Power at the EU Grid Supply Point for the benefit of the Total System. The Company and the relevant Network Operator shall agree on a method to carry out this control, to ensure the justified level of security of supply for both parties. Any such solution including joint study work and timelines would be agreed between The Company and the relevant Network Operator as reasonable, efficient and proportionate.
- In accordance with ECC.6.4.5.3, the relevant **Network Operator** may require **The Company** to consider its **Network Operator's System** for **Reactive Power** management. Any such requirement would need to be agreed between **The Company** and the relevant **Network Operator** and justified by **The Company**.
- ECC.6.4.6 System Restoration
- Distribution Restoration Zone Plans are dependent upon Restoration Contractors who, have an Anchor Restoration Contract which requires the capability to Start-Up from Shutdown within 8 hours and to energise a part of a Network Operator's System (and in some cases could extend to energisation of parts of the Transmission System) upon instruction from a relevant Network Operator, without an external electrical power supply. Distribution Restoration Zone Plans may also be dependent upon Top Up Restoration Contractors. Network Operators shall be responsible for instructing Restoration Contractors in accordance with a Distribution Restoration Zone Plan once The Company has issued an instruction to the Network Operator to activate a Distribution Restoration Zone as provided for in OC9.4.7.8.1.
- ECC.6.4.6.2. Where a need for a **Distribution Restoration Zone** is agreed in accordance with OC9, the following requirements shall apply:-
 - (a) Where there is a requirement for two adjacent **Distribution Restoration Zones** to be **Synchronised** as part of the wider **System Restoration** process and as catered for in the relevant **Distribution Restoration Zone Plans**, appropriate **Synchronising** facilities shall exist or shall be installed by the **Network Operator** or **Relevant Transmission Licensee** as set out in OC9.4.7.6.3(d). Such **Synchronising** facilities shall be identified as part of the development of the **Restoration Plan** as set out in OC9.4.7.6.1. Where a **Distribution Restoration Zone** extends to **Transmission Plant** and **Apparatus** as provided for in OC9.4.7.8.15, the responsibility for the provision of these facilities on **Transmission** equipment is the responsibility of the **Relevant Transmission Licensee**.

- (b) The Company and the Network Operator and Relevant Transmission Licensee (where necessary) shall agree the monitoring and operational metering which shall be installed in the Network Operator's System, including but not limited to, operational metering signals, status indications and the topology of the Network Operator's System falling within the scope of the Local Joint Restoration Plan or Distribution Restoration Zone Plan, and the output and status of Restoration Contractor's Plant and Apparatus. Where appropriate, some of this information may be supplied as outputs from the Distribution Restoration Zone Control System within the Distribution Restoration Zone where one is installed. This data shall be provided to The Company and Relevant Transmission Licensee (where necessary) through appropriate data links as agreed between The Company and the Network Operator.
- (c) **Network Operators** shall have secure, robust and power resilient communications systems between their **Control Centres** and the point at which **Restoration Contractor's Plant** and **Apparatus** is connected to the **Network Operator's System** as provided for in ECC.7.10 and ECC.7.11.

ECC.6.5 Communications Plant

- In order to ensure control of the **National Electricity Transmission System**, telecommunications between **Users** and **The Company** must (including in respect of any **OTSDUW Plant and Apparatus** at the **OTSUA Transfer Time**), if required by **The Company**, be established in accordance with the requirements set down below.
- ECC.6.5.2 <u>Control Telephony and System Telephony</u>
- ECC.6.5.2.1 Control Telephony provides secure point to point telephony for routine Control Calls, priority Control Calls and emergency Control Calls.
- System Telephony uses an appropriate public communications network to provide telephony for Control Calls, inclusive of emergency Control Calls. For the avoidance of doubt, System Telephony could include but shall not be limited to: an analogue or digital telephone line; a mobile telephone or an internet-based voice communication system, all of which would be connected to an appropriate public communications network.
- ECC.6.5.2.3 Calls made and received over **Control Telephony** and **System Telephony** may be recorded and subsequently replayed for commercial and operational reasons.
- ECC.6.5.3 Not Used
- ECC.6.5.4 Obligations in respect of Control Telephony and System Telephony
- Where The Company requires Control Telephony, Users are required to use the Control Telephony to communicate with The Company and / or the Transmission Licensees' in respect of all Connection Points with the National Electricity Transmission System, all Embedded Large Power Stations, Embedded HVDC Systems and Network Operator's Control Centres as appropriate. The Company shall provide Control Telephony interface equipment at the User's Control Point or the Network Operators Control Centre as appropriate. Where the EU Code User's or Network Operators Control Centre telephony equipment is not capable of providing the required facilities or is otherwise incompatible with the Transmission Control Telephony, The Company shall provide a Control Telephony handset(s). Details of and relating to the Control Telephony requirements are contained in the Bilateral Agreement with EU Code User's.
- Where in **The Company's** sole opinion the installation of **Control Telephony** is not practicable at a **User's Control Point(s)**, **The Company** shall specify in the **Bilateral Agreement** whether **System Telephony** is required. Where **System Telephony** is required by **The Company**, the **User** shall ensure that **System Telephony** is installed.

- Where **System Telephony** is installed, **EU Code Users** are required to use the **System Telephony** for communication with **The Company** and the relevant **Transmission Licensees' Control Engineers** in respect of those **Control Point(s)** for which it has been installed. Details of and relating to the **System Telephony** required are contained in the **Bilateral Agreement**.
- Where **Control Telephony** or **System Telephony** is installed, routine testing of such facilities may be required by **The Company** (not normally more than once in any calendar month). The **User** and **The Company** shall use reasonable endeavours to agree a test programme and where **The Company** requests the assistance of the **User** in performing the agreed test programme the **User** shall provide such assistance. **The Company** requires the **EU Code User** to test the backup power supplies feeding its **Control Telephony** facilities at least once every 5 years.
- ECC.6.5.4.5 **Control Telephony** and **System Telephony** shall only be used for the purposes of operational voice communication between **The Company** and the relevant **User**.
- Control Telephony contains emergency calling functionality to be used for operational communication only under normal and emergency conditions. Functionality enables The Company and Users to utilise a priority call in the event of an emergency. The Company and EU Code Users shall only use such priority call functionality for urgent operational communications.
- ECC.6.5.5 <u>Technical Requirements for Control Telephony and System Telephony</u>
- ECC.6.5.5.1 Detailed information on the technical interfaces and support requirements for **Control Telephony** is provided in the **Control Telephony Electrical Standard** identified in the Annex to the **General Conditions**. Where additional information, or information in relation to **Control Telephony** applicable in Scotland, is requested by **Users**, this will be provided, where possible, by **The Company**.
- System Telephony shall consist of a dedicated telephone connected to an appropriate public communications network that shall be configured by the relevant User. The Company shall provide a dedicated free phone number (UK only), for the purposes of receiving incoming calls to The Company, which Users shall utilise for System Telephony. System Telephony shall only be utilised by The Company's Control Engineer and the User's Responsible Engineer/Operator for the purposes of operational communications.
- ECC.6.5.6 Operational Metering
- ECC.6.5.6.1 It is an essential requirement for **The Company** and **Network Operators** to have visibility of the real time output and status of indications of **User's Plant and Apparatus** so they can control the operation of the **System**.
- ECC.6.5.6.2 Type B, Type C and Type D Power Park Modules, HVDC Equipment, Network Operators and Non Embedded Customers are required to be capable of exchanging operational metering data with The Company and Relevant Transmission Licensees (as applicable) with time stamping. Time stamping would generally be to a sampling rate of 1 second or better unless otherwise specified by The Company in the Bilateral Agreement.
- The Company in coordination with the Relevant Transmission Licensee shall specify in the Bilateral Agreement the operational metering signals to be provided by the EU Generator, HVDC System Owner, Network Operator or Non-Embedded Customer. In the case of Network Operators and Non-Embedded Customers, detailed specifications relating to the operational metering standards at EU Grid Supply Points and the data required are published as Electrical Standards in the Annex to the General Conditions.

- (a) The Company or The Relevant Transmission Licensee, as applicable, shall provide system control and data acquisition (SCADA) outstation interface equipment. Each EU Code User shall provide such voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the Transmission SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement. In the case of OTSDUW, the User shall provide such SCADA outstation interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement.
 - (b) For the avoidance of doubt, for **Active Power** and **Reactive Power** measurements, circuit breaker and disconnector status indications from:
 - (i) CCGT Modules from Type B, Type C and Type D Power Generating Modules, the outputs and status indications must each be provided to The Company on an individual CCGT Unit basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from Unit Transformers and/or Station Transformers must be provided.
 - (ii) For Type B, Type C and Type D Power Park Modules the outputs and status indications must each be provided to The Company on an individual Power Park Module basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from station transformers must be provided.
 - (iii) In respect of OTSDUW Plant and Apparatus, the outputs and status indications must be provided to The Company for each piece of electrical equipment. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements at the Interface Point must be provided.
 - (c) For the avoidance of doubt, the requirements of ECC.6.5.6.4(a) in the case of a Cascade Hydro Scheme will be provided for each Generating Unit forming part of that Cascade Hydro Scheme. In the case of Embedded Generating Units forming part of a Cascade Hydro Scheme the data may be provided by means other than the SCADA outstation located at the Power Station, such as, with the agreement of the Network Operator in whose system such Embedded Generating Unit is located, from the Network Operator's SCADA system to The Company. Details of such arrangements will be contained in the relevant Bilateral Agreements between The Company and the Generator and the Network Operator.
 - (d) In the case of a Power Park Module, additional energy input signals (e.g. wind speed, and wind direction) may be specified in the Bilateral Agreement. A Power Available signal will also be specified in the Bilateral Agreement. The signals would be used to establish the potential level of energy input from the Intermittent Power Source for monitoring pursuant to ECC.6.6.1 and Ancillary Services and will, in the case of a wind farm, be used to provide The Company with advanced warning of excess wind speed shutdown and to determine the level of Headroom available from Power Park Modules for the purposes of calculating response and reserve. For the avoidance of doubt, the Power Available signal would be automatically provided to The Company and represent the sum of the potential output of all available and operational Power Park Units within the Power Park Module. The refresh rate of the Power Available signal shall be specified in the Bilateral Agreement. In the case of an Electricity Storage Module, the requirement to provide a Power Available Signal when the Plant is in both an importing and exporting mode of operation would be specified in the Bilateral Agreement.
 - (e) In the case of an **Electricity Storage Module**, additional input signals (e.g. state of energy (MWhr, and system availability) may be specified in the **Bilateral Agreement**. A **Power Available** signal will also be specified in the **Bilateral Agreement** in accordance with the requirements of ECC.6.5.6.4(d).

- ECC.6.5.6.5 In addition to the requirements of the **Balancing Codes**, each **HVDC Converter** unit of an **HVDC system** shall be equipped with an automatic controller capable of receiving instructions from **The Company**. This automatic controller shall be capable of operating the **HVDC Converter** units of the **HVDC System** in a coordinated way. **The Company** shall specify the automatic controller hierarchy per **HVDC Converter** unit.
- ECC.6.5.6.6 The automatic controller of the **HVDC System** referred to in paragraph ECC.6.5.6.5 shall be capable of sending the following signal types to **The Company** (where applicable):
 - (a) operational metering signals, providing at least the following:
 - (i) start-up signals;
 - (ii) AC and DC voltage measurements;
 - (iii) AC and DC current measurements;
 - (iv) Active and Reactive Power measurements on the AC side;
 - (v) DC power measurements;
 - (vi) HVDC Converter unit level operation in a multi-pole type HVDC Converter;
 - (vii) elements and topology status; and
 - (viii) Frequency Sensitive Mode, Limited Frequency Sensitive Mode Overfrequency and Limited Frequency Sensitive Mode Underfrequency Active Power ranges (where applicable).
 - (b) alarm signals, providing at least the following:
 - (i) emergency blocking;
 - (ii) ramp blocking;
 - (iii) fast Active Power reversal (where applicable)
- ECC.6.5.6.7 The automatic controller referred to in ECC.6.5.6.5 shall be capable of receiving the following signal types from **The Company** (where applicable):
 - (a) operational metering signals, receiving at least the following:
 - (i) start-up command;
 - (ii) Active Power setpoints;
 - (iii) Frequency Sensitive Mode settings;
 - (iv) Reactive Power, voltage or similar setpoints;
 - (v) Reactive Power control modes;
 - (vi) power oscillation damping control; and
 - (b) alarm signals, receiving at least the following:
 - (i) emergency blocking command;
 - (ii) ramp blocking command;
 - (iii) Active Power flow direction; and
 - (iv)) fast **Active Power** reversal command.
 - ECC.6.5.6.8 With regards to operational metering signals, the resolution and refresh rate required would be 1 second or better unless otherwise agreed with **The Company**

ECC.6.5.6.9 In addition to the above requirements, **Restoration Contractors** shall be capable of providing the operational metering requirements specified in the **Anchor Restoration Contract** or **Top Up Restoration Contract** during **System Restoration**. In particular for renewable generation, the volume of primary energy such as wind speed and in the case of storage, storage capacity shall be provided.

Instructor Facilities

ECC.6.5.7 The **EU Code User** shall accommodate **Instructor Facilities** provided by **The Company** for the receipt of operational messages relating to **System** conditions.

Electronic Data Communication Facilities

- ECC.6.5.8 (a) All **BM Participants** must ensure that appropriate electronic data communication facilities are in place to permit the submission of data, as required by the **Grid Code**, to **The Company**.
 - (b) In addition,
 - (1) any **User** that wishes to participate in the **Balancing Mechanism**;

or

(2) any BM Participant in respect of its BM Units at a Power Station and the BM Participant is required to provide all Part 1 System Ancillary Services in accordance with ECC.8.1 (unless The Company has otherwise agreed)

must ensure that appropriate automatic logging devices are installed at the **Control Points** of its **BM Units** to submit data to and to receive instructions from **The Company**, as required by the **Grid Code**. For the avoidance of doubt, in the case of an **Interconnector User** the **Control Point** will be at the **Control Centre** of the appropriate **Externally Interconnected System Operator**.

(c) Detailed specifications of these required electronic facilities will be provided by The Company on request and they are listed as Electrical Standards in the Annex to the General Conditions.

Facsimile Machines and Electronic Communication Platform

- ECC.6.5.9 Each **User** and **The Company** shall provide a facsimile machine or machines:
 - (a) in the case of **Generators**, at the **Control Point** of each **Power Station** and at its **Trading Point**;
 - (b) in the case of The Company and Network Operators, at the Control Centre(s); and
 - (c) in the case of **Non-Embedded Customers** and **HVDC Equipment** owners at the **Control Point**.

Each User shall notify, prior to connection to the System of the User's Plant and Apparatus, The Company of its or their telephone number or numbers, and will notify The Company of any changes. Prior to connection to the System of the User's Plant and Apparatus The Company shall notify each User of the telephone number or numbers of its facsimile machine or machines and will notify any changes.

Electronic Communication Platform

On a date agreed between **The Company** and an **EU Code User**, **The Company** shall provide an **Electronic Communication Platform** accessible to that **EU Code User** and that **EU Code User** shall provide access facilities at the following locations:

- (a) in the case of **EU Generators**, at the **Control Point** of each **Power Station** and at their **Trading Point(s)**;
- (b) in the case of Network Operators, at their Control Centre(s); and

(c) in the case of **Non-Embedded Customers** and **DC Converter Station** owners at their **Control Point(s)**.

The **EU Code User** shall ensure the facilities required to access the **Electronic Communication Platform** are maintained at all times.

ECC.6.5.10 <u>Busbar Voltage</u>

The Relevant Transmission Licensee shall, subject as provided below, provide each Generator or HVDC System Owner at each Grid Entry Point where one of its Power Stations or HVDC Systems is connected with appropriate voltage signals to enable the Generator or HVDC System owner to obtain the necessary information to permit its Power Generating Modules (including DC Connected Power Park Modules) or HVDC System to be Synchronised to the National Electricity Transmission System. The term "voltage signal" shall mean in this context, a point of connection on (or wire or wires from) a relevant part of Transmission Plant and/or Apparatus at the Grid Entry Point, to which the Generator or HVDC System Owner, with The Company's agreement (not to be unreasonably withheld) in relation to the Plant and/or Apparatus to be attached, will be able to attach its Plant and/or Apparatus (normally a wire or wires) in order to obtain measurement outputs in relation to the busbar.

ECC.6.5.11 Bilingual Message Facilities

- (a) A Bilingual Message Facility is the method by which the User's Responsible Engineer/Operator, the Externally Interconnected System Operator and The Company's Control Engineers communicate clear and unambiguous information in two languages for the purposes of control of the Total System in both normal and emergency operating conditions.
- (b) A Bilingual Message Facility, where required, will provide up to two hundred pre-defined messages with up to five hundred and sixty characters each. A maximum of one minute is allowed for the transmission to, and display of, the selected message at any destination. The standard messages must be capable of being displayed at any combination of locations and can originate from any of these locations. Messages displayed in the UK will be displayed in the English language.
- (c) Detailed information on a Bilingual Message Facility and suitable equipment required for individual **User** applications will be provided by **The Company** upon request.

ECC.6.6 Monitoring

ECC.6.6.1 <u>System Monitoring</u>

ECC.6.6.1.1 Each Type C and Type D Power Generating Module including DC Connected Power Park Modules shall be equipped with a facility to provide fault recording and monitoring of dynamic system behaviour. These requirements are necessary to record conditions during System faults and detect poorly damped power oscillations. This facility shall record the following parameters:

- voltage,Active Power,Reactive Power, andFrequency.
- Detailed specifications for fault recording and dynamic system monitoring equipment including triggering criteria and sample rates are listed as **Electrical Standards** in the **Annex** to the **General Conditions**. For Dynamic System Monitoring, the specification for the communication protocol and recorded data shall also be included in the **Electrical Standard**.

- ECC.6.6.1.3 The Company in coordination with the Relevant Transmission Licensee shall specify any requirements for Power Quality Monitoring in the Bilateral Agreement. The power quality parameters to be monitored, the communication protocols for the recorded data and the time frames for compliance shall be agreed between The Company, the Relevant Transmission Licensee and EU Generator.
- ECC.6.6.1.4 **HVDC Systems** shall be equipped with a facility to provide fault recording and dynamic system behaviour monitoring of the following parameters for each of its **HVDC Converter Stations**:
 - (a) AC and DC voltage;
 - (b) AC and DC current;
 - (c) Active Power;
 - (d) Reactive Power; and
 - (e) Frequency.
- ECC.6.6.1.5 **The Company** in coordination with the **Relevant Transmission Licensee** may specify quality of supply parameters to be complied with by the **HVDC System**, provided a reasonable prior notice is given.
- ECC.6.6.1.6 The particulars of the fault recording equipment referred to in ECC.6.6.1.4, including analogue and digital channels, the settings, including triggering criteria and the sampling rates, shall be agreed between the HVDC System Owner and The Company in coordination with the Relevant Transmission Licensee.
- ECC.6.6.1.7 All dynamic system behaviour monitoring equipment shall include an oscillation trigger, specified by **The Company**, in coordination with the **Relevant Transmission Licensee**, with the purpose of detecting poorly damped power oscillations.
- ECC.6.6.1.8 The facilities for quality of supply and dynamic system behaviour monitoring shall include arrangements for the HVDC System Owner and The Company and/or Relevant Transmission Licensee to access the information electronically. The communications protocols for recorded data shall be agreed between the HVDC System Owner, The Company and the Relevant Transmission Licensee.
- ECC.6.6.1.9 In order to accurately monitor the performance of a **Grid Forming Plant**, each **Grid Forming Plant**, each **Grid Forming Plant** shall be equipped with a facility to accurately record the following parameters at a rate of 10ms: -
 - System Frequency using a nominated algorithm as defined by The Company
 - The **ROCOF** rate using a nominated algorithm as defined by **The Company** based on a 500ms rolling average
 - A technique for recording the **Grid Phase Jump Angle** by using either a nominated algorithm as defined by **The Company** or an algorithm that records the time period of each half cycle with a time resolution of 10 microseconds. For a 50Hz **System**, a 1 degree phase jump is a time period change of 55.6 microseconds.
- ECC.6.6.1.10 Detailed specifications for **Grid Forming Capability Plant** dynamic performance including triggering criteria, sample rates, the communication protocol and recorded data shall be specified by **The Company** in the **Bilateral Agreement**.
- ECC.6.6.2 <u>Frequency Response Monitoring</u>
- ECC.6.6.2.1 Each Type C and Type D Power Generating Module including DC Connected Power Park Modules shall be fitted with equipment capable of monitoring the real time Active Power output of a Power Generating Module when operating in Frequency Sensitive Mode.
- ECC.6.6.2.2

Detailed specifications of the **Active Power Frequency** response requirements including the communication requirements are listed as **Electrical Standards** in the **Annex** to the **General Conditions**.

- ECC.6.6.2.3 The Company in co-ordination with the Relevant Transmission Licensee shall specify additional signals to be provided by the EU Generator by monitoring and recording devices in order to verify the performance of the Active Power Frequency response provision of participating Power Generating Modules.
- ECC.6.6.3 <u>Compliance Monitoring</u>
- ECC.6.6.3.1 For all on site monitoring by **The Company** of witnessed tests pursuant to the **CP** or **OC5** or **ECP** the **User** shall provide suitable test signals as outlined in either OC5.A.1or ECP.A.4 (as applicable).
- ECC.6.6.3.2 The signals which shall be provided by the **User** to **The Company** for onsite monitoring shall be of the following resolution, unless otherwise agreed by **The Company**:
 - (i) 1 Hz for reactive range tests
 - (ii) 10 Hz for frequency control tests
 - (iii) 100 Hz for voltage control tests
 - (iv) 1 kHz for Grid Forming Plant signals including fast fault current measurements
 - (v) 100Hz for the other **Grid Forming Plant** tests carried out in accordance with ECC.6.6.1.9
- ECC.6.6.3.3 The **User** will provide all relevant signals for this purpose in the form of d.c. voltages within the range -10V to +10V. In exceptional circumstances some signals may be accepted as d.c. voltages within the range -60V to +60V with prior agreement between the **User** and **The Company**. All signals shall:
 - (i) in the case of an Onshore Power Generating Module or Onshore HVDC Convertor Station, be suitably terminated in a single accessible location at the Generator or HVDC Converter Station owner's site.
 - (ii) in the case of an Offshore Power Generating Module and OTSDUW Plant and Apparatus, be transmitted onshore without attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and be suitably terminated in a single robust location normally located at or near the onshore Interface Point of the Offshore Transmission System to which it is connected.
- All signals shall be suitably scaled across the range. The following scaling would (unless **The Company** notify the **User** otherwise) be acceptable to **The Company**:
 - (a) 0MW to Maximum Capacity or Interface Point Capacity 0-8V dc
 - (b) Maximum leading Reactive Power to maximum lagging Reactive Power -8 to 8V dc
 - (c) 48 52Hz as -8 to 8V dc
 - (d) Nominal terminal or connection point voltage -10% to +10% as -8 to 8V dc
- ECC.6.6.3.5 The **User** shall provide to **The Company** a 230V power supply adjacent to the signal terminal location.
- ECC.7 SITE RELATED CONDITIONS
- ECC.7.1 Not used.
- ECC.7.2 Responsibilities For Safety
- Any User entering and working on its Plant and/or Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site will work to the Safety Rules of the Relevant Transmission Licensee, as advised by The Company.

- For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** entering and working on **Transmission Plant** and/or **Apparatus** on a **User Site** will work to the **User's Safety Rules**.
- A User may, with a minimum of six weeks notice, apply to The Company for permission to work according to that Users own Safety Rules when working on its Plant and/or Apparatus on a Transmission Site rather than those set out in ECC.7.2.1. If The Company is of the opinion that the User's Safety Rules provide for a level of safety commensurate with those set out in ECC.7.2.1, The Company will notify the User, in writing, that, with effect from the date requested by the User, the User may use its own Safety Rules when working on its Plant and/or Apparatus on the Transmission Site. For a Transmission Site, in forming its opinion, The Company will seek the opinion of the Relevant Transmission Licensee. Until receipt of such written approval from The Company, the User will continue to use the Safety Rules as set out in ECC.7.2.1.
- In the case of a User Site, The Company may, with a minimum of six weeks notice, apply to a User for permission for the Relevant Transmission Licensee to work according to the Relevant Transmission Licensee's Safety Rules when working on Transmission Plant and/or Apparatus on that User Site, rather than the User's Safety Rules. If the User is of the opinion that the Relevant Transmission Licensee's Safety Rules, provide for a level of safety commensurate with that of that User's Safety Rules, it will notify The Company, in writing, that, with effect from the date requested by The Company, that the Relevant Transmission Licensee may use its own Safety Rules when working on its Transmission Plant and/or Apparatus on that User's Site. Until receipt of such written approval from the User, The Company shall procure that the Relevant Transmission Licensee shall continue to use the User's Safety Rules.
- For a Transmission Site, if The Company gives its approval for the User's Safety Rules to apply to the User when working on its Plant and/or Apparatus, that does not imply that the User's Safety Rules will apply to entering the Transmission Site and access to the User's Plant and/or Apparatus on that Transmission Site. Bearing in mind the Relevant Transmission Licensee's responsibility for the whole Transmission Site, entry and access will always be in accordance with the Relevant Transmission Licensee's site access procedures. For a User Site, if the User gives its approval for Relevant Transmission Licensee When working on its Plant and Apparatus, that does not imply that the Relevant Transmission Licensee's Safety Rules will apply to entering the User Site, and access to the Transmission Plant and Apparatus on that User Site. Bearing in mind the User's responsibility for the whole User Site, entry and access will always be in accordance with the User's site access procedures.
- For User Sites, Users shall notify The Company of any Safety Rules that apply to the Relevant Transmission Licensee's staff working on User Sites. The Company shall procure that the Relevant Transmission Licensee shall notify Users of any Safety Rules that apply to the User's staff working on the Transmission Site.
- ECC.7.2.7 Each **Site Responsibility Schedule** must have recorded on it the **Safety Rules** which apply to each item of **Plant** and/or **Apparatus**.
- In the case of **OTSUA** a **User Site** or **Transmission Site** shall, for the purposes of this ECC.7.2, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- ECC.7.3 <u>Site Responsibility Schedules</u>
- In order to inform site operational staff and The Company's Control Engineers of agreed responsibilities for Plant and/or Apparatus at the operational interface, a Site Responsibility Schedule shall be produced for Connection Sites (and in the case of OTSUA, until the OTSUA Transfer Time, Interface Sites) for The Company, the Relevant Transmission Licensee and Users with whom they interface.
- ECC.7.3.2 The format, principles and basic procedure to be used in the preparation of **Site Responsibility Schedules** are set down in Appendix 1.

Operation Diagrams

- An **Operation Diagram** shall be prepared for each **Connection Site** at which a **Connection Point** exists (and in the case of **OTSDUW Plant and Apparatus**, by **User's** for each **Interface Point**) using, where appropriate, the graphical symbols shown in Part 1A of Appendix 2. **Users** should also note that the provisions of **OC11** apply in certain circumstances.
- The Operation Diagram shall include all HV Apparatus and the connections to all external circuits and incorporate numbering, nomenclature and labelling, as set out in OC11. At those Connection Sites (or in the case of OTSDUW Plant and Apparatus, Interface Points) where gas-insulated metal enclosed switchgear and/or other gas-insulated HV Apparatus is installed, those items must be depicted within an area delineated by a chain dotted line which intersects gas-zone boundaries. The nomenclature used shall conform with that used on the relevant Connection Site and circuit (and in the case of OTSDUW Plant and Apparatus, Interface Point and circuit). The Operation Diagram (and the list of technical details) is intended to provide an accurate record of the layout and circuit interconnections, ratings and numbering and nomenclature of HV Apparatus and related Plant.
- A non-exhaustive guide to the types of **HV Apparatus** to be shown in the **Operation Diagram** is shown in Part 2 of Appendix 2, together with certain basic principles to be followed unless equivalent principles are approved by **The Company**.

Gas Zone Diagrams

- A Gas Zone Diagram shall be prepared for each Connection Site at which a Connection Point (and in the case of OTSDUW Plant and Apparatus, by User's for an Interface Point) exists where gas-insulated switchgear and/or other gas-insulated HV Apparatus is utilised. They shall use, where appropriate, the graphical symbols shown in Part 1B of Appendix 2.
- The nomenclature used shall conform with that used in the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, relevant **Interface Point** and circuit).
- ECC.7.4.6 The basic principles set out in Part 2 of Appendix 2 shall be followed in the preparation of **Gas Zone Diagrams** unless equivalent principles are approved by **The Company**.

<u>Preparation of Operation and Gas Zone Diagrams for Users' Sites and Transmission Interface</u> Sites

- In the case of a User Site, the User shall prepare and submit to The Company, an Operation Diagram for all HV Apparatus on the User side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Offshore Transmission side of the Connection Point and the Interface Point) and The Company shall provide the User with an Operation Diagram for all HV Apparatus on the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus on what will be the Onshore Transmission side of the Interface Point, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement.
- The User will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram and The Company's Operation Diagram, a composite Operation Diagram for the complete Connection Site (and in the case of OTSDUW Plant and Apparatus, Interface Point), also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.4.9 The provisions of ECC.7.4.7 and ECC.7.4.8 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.

Preparation of Operation and Gas Zone Diagrams for Transmission Sites

In the case of an **Transmission Site**, the **User** shall prepare and submit to **The Company** an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point**, in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.

- The Company will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram, a composite Operation Diagram for the complete Connection Site, also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.4.12 The provisions of ECC.7.4.10 and ECC.7.4.11 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.
- ECC.7.4.13 Changes to Operation and Gas Zone Diagrams
- ECC.7.4.13.1 When **The Company** has decided that it wishes to install new **HV Apparatus** or it wishes to change the existing numbering or nomenclature of **Transmission HV Apparatus** at a **Transmission Site**, **The Company** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to each such **User** a revised **Operation Diagram** of that **Transmission Site**, incorporating the new **Transmission HV Apparatus** to be installed and its numbering and nomenclature or the changes, as the case may be. **OC11** is also relevant to certain **Apparatus**.
- When a **User** has decided that it wishes to install new **HV Apparatus**, or it wishes to change the existing numbering or nomenclature of its **HV Apparatus** at its **User Site**, the **User** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to **The Company** a revised **Operation Diagram** of that **User Site** incorporating the **EU Code User HV Apparatus** to be installed and its numbering and nomenclature or the changes as the case may be. **OC11** is also relevant to certain **Apparatus**.
- ECC.7.4.13.3 The provisions of ECC.7.4.13.1 and ECC.7.4.13.2 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is installed.

Validity

- (a) The composite **Operation Diagram** prepared by **The Company** or the **User**, as the case may be, will be the definitive **Operation Diagram** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the composite **Operation Diagram**, a meeting shall be held at the **Connection Site**, as soon as reasonably practicable, between **The Company** and the **User**, to endeavour to resolve the matters in dispute.
 - (b) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (c) An equivalent rule shall apply for **Gas Zone Diagrams** where they exist for a **Connection Site**.
- In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.4, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System** and references to **HV Apparatus** in this ECC.7.4 shall include references to **HV OTSUA**.
- ECC.7.5 <u>Site Common Drawings</u>
- ECC.7.5.1 Site Common Drawings will be prepared for each Connection Site (and in the case of OTSDUW, each Interface Point) and will include Connection Site (and in the case of OTSDUW, Interface Point) layout drawings, electrical layout drawings, common Protection/control drawings and common services drawings.

Preparation of Site Common Drawings for a User Site and Transmission Interface Site

- In the case of a User Site, The Company shall prepare and submit to the User, Site Common Drawings for the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Onshore Transmission side of the Interface Point,) and the User shall prepare and submit to The Company, Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, on what will be the Offshore Transmission side of the Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- The User will then prepare, produce and distribute, using the information submitted on the Transmission Site Common Drawings, Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.

Preparation of Site Common Drawings for a Transmission Site

- In the case of a **Transmission Site**, the **User** will prepare and submit to **The Company Site Common Drawings** for the **User** side of the **Connection Point** in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- The Company will then prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, Site Common Drawings for the complete Connection Site in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- When a **User** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a **User Site**, as soon as reasonably practicable, prepare, produce and distribute revised **Site Common Drawings** for the complete **Connection Site** (and in the case of **OTSDUW**, **Interface Point**); and
 - (b) if it is a Transmission Site, as soon as reasonably practicable, prepare and submit to The Company revised Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, Interface Point) and The Company will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in the **User's** reasonable opinion the change can be dealt with by it notifying **The Company** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

- When **The Company** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site**(and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a **Transmission Site**, as soon as reasonably practicable, prepare, produce and distribute revised **Site Common Drawings** for the complete **Connection Site** (and in the case of **OTSDUW**, **Interface Point**); and
 - (b) if it is a User Site, as soon as reasonably practicable, prepare and submit to the User revised Site Common Drawings for the Transmission side of the Connection Point (in the case of OTSDUW, Interface Point) and the User will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the Transmission Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in **The Company's** reasonable opinion the change can be dealt with by it notifying the **User** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

Validity

- (a) The **Site Common Drawings** for the complete **Connection Site** prepared by the **User** or **The Company**, as the case may be, will be the definitive **Site Common Drawings** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the **Site Common Drawings**, a meeting shall be held at the **Site**, as soon as reasonably practicable, between **The Company** and the **User**, to endeavour to resolve the matters in dispute.
 - (b) The Site Common Drawing prepared by The Company or the User, as the case may be, will be the definitive Site Common Drawing for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.5, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- ECC.7.6 Access
- The provisions relating to access to **Transmission Sites** by **Users**, and to **Users' Sites** by **Relevant Transmission Licensees**, are set out in each **Interface Agreement** (or in the case of **Interfaces Sites** prior to the **OTSUA Transfer Time** agreements in similar form) with, the **Relevant Transmission Licensee** and each **User**.
- In addition to those provisions, where a **Transmission Site** contains exposed **HV** conductors, unaccompanied access will only be granted to individuals holding an **Authority for Access** issued by the **Relevant Transmission Licensee**.
- ECC.7.6.3 The procedure for applying for an **Authority for Access** is contained in the **Interface Agreement**.
- ECC.7.7 Maintenance Standards
- It is the **User's** responsibility to ensure that all its **Plant** and **Apparatus** (including, until the **OTSUA Transfer Time**, any **OTSUA**) on a **Transmission Site** is tested and maintained adequately for the purpose for which it is intended, and to ensure that it does not pose a threat to the safety of any **Transmission Plant**, **Apparatus** or personnel on the **Transmission Site**. **The Company** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** at any time
- For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** has a responsibility to ensure that all **Transmission Plant** and **Apparatus** on a **User Site** is tested and maintained adequately for the purposes for which it is intended and to ensure that it does not pose a threat to the safety of any **User's Plant**, **Apparatus** or personnel on the **User Site**.

The **User** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** on its **User Site** at any time.

- ECC.7.8 Site Operational Procedures
- Where there is an interface with **National Electricity Transmission System The Company** and **Users** must make available staff to take necessary **Safety Precautions** and carry out operational duties as may be required to enable work/testing to be carried out and for the operation of **Plant** and **Apparatus** (including, prior to the **OTSUA Transfer Time**, any **OTSUA**) connected to the **Total System**.
- ECC.7.9 Generators, HVDC System owners and BM Participants (including Virtual Lead Parties) shall provide a Control Point.

- a) In the case of EU Generators and HVDC System owners, for each Power Station or HVDC System directly connected to the National Electricity Transmission System and for each Embedded Large Power Station or Embedded HVDC System, the Control Point shall receive and act upon instructions pursuant to OC7 and BC2 at all times that Power Generating Modules at the Power Station are generating or available to generate or HVDC Systems are importing or exporting or available to do so. In the case of all BM Participants, the Control Point shall be continuously staffed except where the Bilateral Agreement specifies that compliance with BC2 is not required, in which case the Control Point shall be staffed between the hours of 0800 and 1800 each day.
- b) In the case of BM Participants, the BM Participant's Control Point shall be capable of receiving and acting upon instructions from The Company and the relevant Transmission Licensees' Control Engineers.

The Company will normally issue instructions via automatic logging devices in accordance with the requirements of ECC.6.5.8(b).

Where the **BM Participant**'s **Plant** and **Apparatus** does not respond to an instruction from **The Company** via automatic logging devices, or where it is not possible for **The Company** to issue the instruction via automatic logging devices, **The Company** shall issue the instruction by telephone.

In the case of **BM Participants** who own and/or operate a **Power Station** or **HVDC System** with an aggregated **Registered Capacity** or **BM Participants** with **BM Units** with an aggregated **Demand Capacity** per **Control Point** of less than 50MW, or, where a site is not part of a **Virtual Lead Party** as defined in the **BSC**, a **Registered Capacity** or **Demand Capacity** per site of less than 10MW

- a) where this situation arises, a representative of the BM Participant is required to be available to respond to instructions from The Company via the Control Telephony or System Telephony system, as provided for in ECC.6.5.4, between the hours of 0800-1800 each day.
- b) Outside the hours of 0800-1800 each day, the requirements of BC2.9.7 shall apply.

For the avoidance of doubt, **BM Participants** who are unable to provide **Control Telephony** and do not have a continuously staffed **Control Point** may be unable to act as a **Defence Service Provider** and shall be unable to act as a **Restoration Contractor** where these require **Control Telephony** or a **Control Point** in respect of the specification of any such services falling into these categories.

- ECC.7.10 Obligations on Users in respect of Critical Tools and Facilities
- From 04/09/2024 **The Company**, each **Generator**, **HVDC System Owner**, **Network Operator**, **Non-Embedded Customer** and each **Restoration Contractor** with a continuously staffed **Control Point** or **Control Centre** as provided for in ECC.7.9 shall:-
 - (i) Ensure they have the appropriate Critical Tools and Facilities, necessary to control their assets for System Restoration, from their Control Point or Control Centre, as appropriate, for a minimum period of 72 hours (or such longer period as agreed between the Generator, HVDC System Owner, Network Operator, Non-Embedded Customer and/or Restoration Contractor and The Company) following a Total Shutdown or Partial Shutdown.
 - (ii) Ensure as far as reasonably practical that they have adequate control equipment redundancy in place so that in the event of a failure of one or more components of the control system its function is unimpaired.
 - (iii) Report on the results of their management and testing for their **Critical Tools and Facilities** on request from **The Company**.
- From 04/09/2024 each **BM Participant** including a **Virtual Lead Party** with a continuously staffed **Control Point** as provided for in ECC.7.9 (excluding those **BM Participants** covered

by the requirements of ECC.7.10.1), shall:-

- (i) Ensure they have the appropriate Critical Tools and Facilities (as defined in clause (c) of the definition of Critical Tools and Facilities in the Grid Code Glossary and Definitions) for a minimum period of 72 hours (or such longer period as agreed between the BM Participant including a Virtual Lead Party and The Company) following a Total Shutdown or Partial Shutdown.
- (ii) Ensure as far as reasonably practical that they have adequate control equipment redundancy in place at their **Control Point** so that in the event of a failure of one or more components of their **Critical Tools and Facilities** its function is unimpaired.
- (iii) Report on the results of their management and testing for their **Critical Tools and Facilities** on request by **The Company**.
- In the case of a BM Participant or Virtual Lead Party which has an Anchor Restoration Contract or Top Up Restoration Contract in respect of one or more of its aggregated Plants, the requirements of ECC.7.10.1 shall only apply between the Control Point of the BM Participant or Virtual Lead Party and that Plant with an Anchor Plant Capability or Top Up Restoration Capability. For other non-contracted Plants under the control of the BM Participant or Virtual Lead Party, the requirements of ECC.7.10.2 shall continue to apply.
- Where a **Network Operator** installs a **Distribution Restoration Zone Control System** to facilitate operation of a **Distribution Restoration Zone Plan**, the high level functional requirements of the **Distribution Restoration Zone Control System** shall be in accordance with the guidance provided in the applicable electrical standard listed in the annex to the **General Conditions**.
- ECC.7.10.5 **Network Operators** shall ensure that their substations which are required to be operable during **System Restoration** have 72 hour electrical supply resilience to facilitate **Network Operators** being able to:
 - restore auxiliary supplies to Transmission substations;
 - switch **Demand** in accordance with a **Restoration Plan**;
 - support The Company in satisfying the requirements of the Electricity System Restoration Standard.
- The Company, each EU Code User and Restoration Contractor shall ensure their Critical Tools and Facilities are cyber secure accordance with the Security of Network and Information System (NIS) Regulations. This requirement applies to The Company, EU Code Users and Restoration Contractors at all times.
- ECC.7.10.7 Notwithstanding the requirements of ECC.7.10.1, **The Company**, each **EU Code User** and **Restoration Contractor** shall ensure that their control systems, communications systems, operational metering and telemetry systems including SCADA, are sufficiently robust and reliable such that they are capable of handling, processing and prioritising the significant volumes of data that could reasonably be expected to occur during **System Restoration**.
- Where an Offshore Generator is connected to an Offshore Transmission System and the Offshore Transmission Licensee does not have Critical Tools and Facilities installed on its Offshore Transmission System, The Company will make an allowance for the Critical Tools and Facilities required to be installed by the Offshore Generator.
- ECC.7.11 <u>Obligations on and Assurance from The Company, EU Code Users and Restoration</u> Contractors during Total Shutdown and Partial Shutdown conditions
- In respect of **The Company**, its **Apparatus** shall be designed such that it can safely shutdown and does not pose a risk to personnel or **Apparatus** in the event of a total loss of supply.

- ECC.7.11.2 All EU Code Users and Restoration Contractors shall ensure their Plant and Apparatus can safely shut down and does not pose a risk to Plant and/or personnel in the event of a total loss of supplies at a EU Code User's Site(s) or Restoration Contractor's site be it caused by a Total Shutdown, Partial Shutdown or such other event. In satisfying this requirement, Generators, HVDC System Owners and Restoration Contractors shall be able to demonstrate to The Company that in the event supplies were to be lost to their Site, then on the restoration of supplies, their Plant can be made operational and begin to operate in at least the same way and as quickly as would be expected for a cold start following a Total System Shutdown or Partial System Shutdown in accordance with the data submitted in PC.A.5.7 in accordance with the Week 24 process. For **EU Code Users** where they believe this requirement is cost prohibitive or technically impossible, such EU Code Users shall discuss the issue with The Company, and The Company shall inform The Authority of the details agreed. Where such an issue cannot be agreed by The Company following all reasonable attempts or where the capability provided by the EU Code User cannot be agreed by The Company as being sufficient after examining all reasonable alternative solutions through the Compliance Processes, the EU Code User may apply for a derogation from the Grid Code.
- The requirements of ECC.7.11.1 and ECC.7.11.2 shall apply for a period of total loss of supplies to **The Company's** operational sites or an **EU Code User's Site** or **Restoration Contractor's** site of up to 72 hours. **EU Code Users** and **Restoration Contractors** shall confirm to **The Company** that the total loss of supplies to their **Site** for a period of up to 72 hours shall not result in damage to **Plant** and **Apparatus** such that it would then be unable to operate upon restoration of electrical supplies to the site.
- ECC.7.11.4 **Network Operators** shall ensure that in coordination with **The Company** and relevant **Transmission Licensees**, they have the capability to switch **Demand** at sufficient speed to support **The Company** in satisfying the requirements of the **Electricity System Restoration Standard**. This requirement assumes:
 - the successful implementation of Restoration Plans;
 - the successful delivery of the obligations of **Restoration Contractors** who are parties to these plans; and
 - the further requirements of OC9 have been implemented.

ECC.8 <u>ANCILLARY SERVICES</u>

ECC.8.1 System Ancillary Services

The ECC contain requirements for the capability for certain Ancillary Services, which are needed for System reasons ("System Ancillary Services"). There follows a list of these System Ancillary Services, together with the paragraph number of the ECC (or other part of the Grid Code) in which the minimum capability is required or referred to. The list is divided into two categories: Part 1 lists the System Ancillary Services which

- (a) Generators in respect of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) are obliged to provide; and,
- (b) **HVDC System Owners** are obliged to have the capability to supply;
- (c) **Generators** in respect of **Medium Power Stations** (except **Embedded Medium Power Stations**) are obliged to provide in respect of **Reactive Power** only:

and Part 2 lists the **System Ancillary Services** which **Generators** or **Restoration Contractors** will provide only if agreement to provide them is reached with **The Company** or in the case where a **Restoration Contractor** is party to a **Distribution Restoration Zone Plan**, agreement is reached with **The Company** and **Network Operator**:

Part 1

- (a) **Reactive Power** supplied (in accordance with ECC.6.3.2)
- (b) **Frequency** Control by means of **Frequency** sensitive generation ECC.6.3.7 and BC3.5.1.

Part 2

- (c) Frequency Control by means of Fast Start ECC.6.3.14.
- (d) Anchor Plant Capability or Top Up Restoration Capability ECC.6.3.5.
- (e) System to Generator Operational Intertripping.
- (f) Services provided by **Restoration Contractors**.

ECC.8.2 <u>Commercial Ancillary Services</u>

Other Ancillary Services are also utilised by The Company in operating the Total System if these have been agreed to be provided by a User (or other person) under an Ancillary Services Agreement or under a Bilateral Agreement, with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes ancillary services equivalent to or similar to System Ancillary Services) ("Commercial Ancillary Services"). The capability for these Commercial Ancillary Services is set out in the relevant Ancillary Services Agreement or Bilateral Agreement (as the case may be).

APPENDIX E1 - SITE RESPONSIBILITY SCHEDULES

FORMAT, PRINCIPLES AND BASIC PROCEDURE TO BE USED IN THE PREPARATION OF SITE RESPONSIBILITY SCHEDULES

ECC.A.1.1 Principles

Types of Schedules

- ECC.A.1.1.1 At all Complexes (which in the context of this ECC shall include, Interface Sites until the OTSUA Transfer Time) the following Site Responsibility Schedules shall be drawn up using the relevant proforma attached or with such variations as may be agreed between The Company and EU Code Users, but in the absence of agreement the relevant proforma attached will be used. In addition, in the case of OTSDUW Plant and Apparatus, and in readiness for the OTSUA Transfer Time, the User shall provide The Company with the necessary information such that Site Responsibility Schedules in this form can be prepared by the Relevant Transmission Licensees for the Transmission Interface Site:
 - (a) Schedule of HV Apparatus
 - (b) Schedule of Plant, LV/MV Apparatus, services and supplies;
 - (c) Schedule of telecommunications and measurements Apparatus.

Other than at **Power Generating Module** (including **DC Connected Power Park Modules**) and **Power Station** locations, the schedules referred to in (b) and (c) may be combined.

New Connection Sites

ECC.A.1.1.2 In the case of a new Connection Site each Site Responsibility Schedule for a Connection Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date (or, where the OTSUA is to become Operational prior to the OTSUA Transfer Time, an alternative date) under the Bilateral Agreement and/or Construction Agreement for that Connection Site (which may form part of a Complex). In the case of a new Interface Site where the OTSUA is to become Operational prior to the OTSUA Transfer Time each Site Responsibility Schedule for an Interface Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement for that Interface Site (which may form part of a Complex) (and references to and requirements placed on "Connection Site" in this ECC shall also be read as "Interface Site" where the context requires and until the OTSUA Transfer Time). Each User shall, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement. provide information to The Company to enable it to prepare the Site Responsibility Schedule.

Sub-division

ECC.A.1.1.3 Each **Site Responsibility Schedule** will be subdivided to take account of any separate **Connection Sites** on that **Complex**.

<u>Scope</u>

- ECC.A.1.1.4 Each **Site Responsibility Schedule** shall detail for each item of **Plant** and **Apparatus**:
 - (a) Plant/Apparatus ownership;
 - (b) Site Manager (Controller) (except in the case of **Plant/Apparatus** located in **SPT's Transmission Area**);
 - (c) Safety issues comprising applicable **Safety Rules** and **Control Person** or other responsible person (**Safety Co-ordinator**), or such other person who is responsible for safety;
 - (d) Operations issues comprising applicable **Operational Procedures** and control engineer;
 - (e) Responsibility to undertake statutory inspections, fault investigation and maintenance.

Each Connection Point shall be precisely shown.

Detail

- ECC.A.1.1.5 (a) In the case of **Site Responsibility Schedules** referred to in ECC.A.1.1.1(b) and (c), with the exception of Protection Apparatus and Intertrip Apparatus operation, it will be sufficient to indicate the responsible User or Transmission Licensee, as the case may
 - (b) In the case of the **Site Responsibility Schedule** referred to in ECC.A.1.1.1(a) and for Protection Apparatus and Intertrip Apparatus, the responsible management unit must be shown in addition to the User or Transmission Licensee, as the case may be.
- ECC.A.1.1.6 The HV Apparatus Site Responsibility Schedule for each Connection Site must include lines and cables emanating from or traversing¹ the **Connection Site**.

Issue Details

ECC.A.1.1.7 Every page of each Site Responsibility Schedule shall bear the date of issue and the issue number.

Accuracy Confirmation

- ECC.A.1.1.8 When a Site Responsibility Schedule is prepared it shall be sent by The Company to the Users involved for confirmation of its accuracy.
- ECC.A.1.1.9 The Site Responsibility Schedule shall then be signed on behalf of The Company by its Responsible Manager (see ECC.A.1.1.16) and on behalf of each User involved by its Responsible Manager (see ECC.A.1.1.16), by way of written confirmation of its accuracy. The Site Responsibility Schedule will also be signed on behalf of the Relevant Transmission Licensee by its Responsible Manager.

Distribution and Availability

- ECC.A.1.1.10 Once signed, two copies will be distributed by **The Company**, not less than two weeks prior to its implementation date, to each User which is a party on the Site Responsibility Schedule, accompanied by a note indicating the issue number and the date of implementation.
- ECC.A.1.1.11 The Company and Users must make the Site Responsibility Schedules readily available to operational staff at the **Complex** and at the other relevant control points.

Alterations to Existing Site Responsibility Schedules

- ECC.A 1.1.12 Without prejudice to the provisions of ECC.A.1.1.15 which deals with urgent changes, when a User identified on a Site Responsibility Schedule becomes aware that an alteration is necessary, it must inform The Company immediately and in any event 8 weeks prior to any change taking effect (or as soon as possible after becoming aware of it, if less than 8 weeks remain when the **User** becomes aware of the change). This will cover the commissioning of new Plant and/or Apparatus at the Connection Site, whether requiring a revised Bilateral Agreement or not, de-commissioning of Plant and/or Apparatus, and other changes which affect the accuracy of the Site Responsibility Schedule.
- ECC.A 1.1.13 Where **The Company** has been informed of a change by a **User**, or itself proposes a change, it will prepare a revised Site Responsibility Schedule by not less than six weeks prior to the change taking effect (subject to it having been informed or knowing of the change eight weeks prior to that time) and the procedure set out in ECC.A.1.1.8 shall be followed with regard to the revised Site Responsibility Schedule.
- ECC.A 1.1.14 The revised Site Responsibility Schedule shall then be signed in accordance with the procedure set out in ECC.A.1.1.9 and distributed in accordance with the procedure set out in ECC.A.1.1.10, accompanied by a note indicating where the alteration(s) has/have been made, the new issue number and the date of implementation.

¹ Details of circuits traversing the **Connection Site** are only needed from the date which is the earlier of the date when the **Site** Responsibility Schedule is first updated and 15th October 2004. In Scotland or Offshore, from a date to be agreed between The Company and the Relevant Transmission Licensee.

Urgent Changes

- ECC.A.1.1.15 When a **User** identified on a **Site Responsibility Schedule**, or **The Company**, as the case may be, becomes aware that an alteration to the **Site Responsibility Schedule** is necessary urgently to reflect, for example, an emergency situation which has arisen outside its control, the **User** shall notify **The Company**, or **The Company** shall notify the **User**, as the case may be, immediately and will discuss:
 - (a) what change is necessary to the Site Responsibility Schedule;
 - (b) whether the **Site Responsibility Schedule** is to be modified temporarily or permanently;
 - (c) the distribution of the revised Site Responsibility Schedule.

The Company will prepare a revised Site Responsibility Schedule as soon as possible, and in any event within seven days of it being informed of or knowing the necessary alteration. The Site Responsibility Schedule will be confirmed by Users and signed on behalf of The Company and Users and the Relevant Transmission Licensee (by the persons referred to in ECC.A.1.1.9) as soon as possible after it has been prepared and sent to Users for confirmation.

Responsible Managers

ECC.A.1.1.16 Each User shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to The Company a list of Managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the User and The Company shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to that User the name of its Responsible Manager and the name of the Relevant Transmission Licensee's Responsible Manager and each shall supply to the other any changes to such list six weeks before the change takes effect where the change is anticipated, and as soon as possible after the change, where the change was not anticipated.

De-commissioning of Connection Sites

ECC.A.1.1.17 Where a **Connection Site** is to be de-commissioned, whichever of **The Company** or the **User** who is initiating the de-commissioning must contact the other to arrange for the **Site Responsibility Schedule** to be amended at the relevant time.

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

		-				AREA		
COMPLEX	ζ :							
CONNECT	ION SITE:							
			S	AFETY	OPERA	TIONS	PARTY RESPON	
ITEM OF PLANT/ APPAR	PLANT APPAR ATUS OWNE	SITE MANA	SAF ETY RUL	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY CO- ORDINAT	OPERATI ONAL PROCED	CONTRO L OR OTHER RESPON SIBLE ENGINEE	SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION & MAINTEN	REMARK

URES

ES

OR

GER

ATUS

R

R

ANCE

S

PAGE:		ISSUE	NO:	DATE:	

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

		•				AREA					
COMPLEX	X:				SCHEDULE:						
CONNECT	TON SITE:										
			SAFETY		OPERATIONS		PARTY				
ITEM OF PLANT/ APPAR ATUS	PLANT APPAR ATUS OWNE R	SITE MANA GER	SAF ETY RUL ES	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY CO- ORDINAT OR	OPERATI ONAL PROCED URES	CONTRO L OR OTHER RESPON SIBLE ENGINEE R	RESPON SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION & MAINTEN ANCE	REMARK S			
NOTES:											
SIGNE D:	NAM E:				COMPAN Y:	I	DAT E:				
SIGNE D:	NAM E:			COMPAN Y:	I	DAT E:					
SIGNE D:	NAM E:			COMPAN Y:	I	DAT E:					
SIGNE D:	NAM E:			COMPAN Y:		DAT E:					
PAGE:			ISSUE	NO:		DATE	:				

SP TRANSMISSION Ltd SITE RESPONSIBILITY SCHEDULE OWNERSHIP, MAINTENANCE AND OPERATIONS OF EQUIPMENT IN JOINT USER SITUATIONS Sheet No. Network Area: Revision: Date: SECTION 'A' BUILDING AND SITE SECTION 'B' CUSTOMER OR OTHER PARTY OWNER ACCESS REQUIRED:-NAME:-LESSEE MAINTENANCE SPECIAL CONDITIONS: ADDRESS: SAFETY TELNO:-SECURITY LOCATION OF SUPPLY SUB STATION: TERMINALS:-LOCATION: SECTION 'C' PLANT FAULT INVESTIGATION OPERATION MAINTENANCE TESTING ITEM SAFETY RULE: RELAY **EQUIPMENT** IDENTIFICATION OWNER REMARKS Protection Equip. Protection Equip Trip and Primary Alarm Equip. Primary Equip. Nos. APPLICABLE SETTINGS Tripping Closing Isolating Earthing Reclosure Equip. SECTION 'D' CONFIGURATION AND CONTROL SECTION 'E' ADDITIONAL INFORMATION CONFIGURATION RESPONSIBILITY TELEPHONE NUMBER REMARKS ITEM Nos TELEPHONE NUMBER REMARKS ITEM Nos. CONTROL RESPONSIBILITY ABBRE WATIONS: D - SP AUTHORISED PERSON - DISTRIBUTION SYSTEM SIGNED SP Iransmission DATE NGC - NATIONAL GRID COMPANY SPD - SP DISTRIBUTION Ltd SPPS - POWERSYSTEMS SP Distribution DATE SIGNED

Issue 6 Revision 33 ECC 11 June 2025

SIGNED

SPT - SP TRANSMISSION Ltd

U-USER

ST - SCOTTISH POWER TELECOMMUNICATIONS
T - SP AUTHORISED PERSON - TRANSMISSION SYSTEM

FOR

PowerSystems/User

DATE

Scottish Hydro-Electric Transmission Limited

Site Responsibility Schedule

Substation Type			J	Number:			Revision:		
Equipment	Owner	Controller	Maintainer	Responsible System User	Responsible Management Unit	Control Authority	Safety Rules	Operational Procedures	Notes

APPENDIX E2 - OPERATION DIAGRAMS

PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS

FIXED CAPACITOR	+	SWITCH DISCONNECTOR	
EARTH	<u>_</u>		
EARTHING RESISTOR	11-111-1	SWITCH DISCONNECTOR WITH INCORPORATED EARTH SWITCH	\$
LIQUID EARTHING RESISTOR	<u> </u>	DISCONNECTOR	
ARC SUPPRESSION COIL		(CENTRE ROTATING POST)	
FIXED MAINTENANCE EARTHING DEV	ICE L	DISCONNECTOR (SINGLE BREAK DOUBLE ROTATING)	
CARRIER COUPLING EQUIPMENT (WITHOUT VT)	R8Y	DISCONNECTOR (SINGLE BREAK)	
CARRIER COUPLING EQUIPMENT (WITH VT ON ONE PHASE)	Y R&Y E	DISCONNECTOR (NON-INTERLOCKED)	 NI
CARRIER COUPLING EQUIPMENT (WITH VT ON 3 PHASES)	R&Y E	DISCONNECTOR (POWER OPERATED) NA - NON-AUTOMATIC A - AUTOMATIC SO - SEQUENTIAL OPERATION FI - FAULT INTERFERING OPERATION	 NA
AC GENERATOR	G	EARTH SWITCH	•
SYNCHRONOUS COMPENSATOR	SC		=
CIRCUIT BREAKER		FAULT THROWING SWITCH (PHASE TO PHASE)	 FT
CIRCUIT BREAKER WITH DELAYED AUTO RECLOSE	DAR	FAULT THROWING SWITCH (EARTH FAULT)	
	1	SURGE ARRESTOR	•
WITHDRAWABLE METALCLAD SWITCHGEAR		THYRISTOR	*

TRANSFORMERS (VECTORS TO INDICATE WINDING CONFIGURATION) TWO WINDING		* BUSBARS =	
THREE WINDING		* THROUGH WALL BUSHING	<u>:</u>
AUTO		* BYPASS FACILITY * CROSSING OF CONDUCTORS (LOWER CONDUCTOR TO BE BROKEN)	_
AUTO WITH DELTA TERTIARY			
EARTHING OR AUX. TRANSFORMER (-) INDICATE REMOTE SITE IF APPLICABLE	415v		
VOLTAGE TRANSFORMERS			
SINGLE PHASE WOUND	v———		
THREE PHASE WOUND SINGLE PHASE CAPACITOR		PREFERENTIAL ABBREVIATIONS	
TWO SINGLE PHASE CAPACITOR	R&B (2)	AUXILIARY TRANSFORMER AUX T EARTHING TRANSFORMER ET	
THREE PHASE CAPACITOR		GAS TURBINE Gas T GENERATOR TRANSFORMER Gen T	
* CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•	GRID TRANSFORMER Gr T SERIES REACTOR Ser Reac SHUNT REACTOR Sh Reac STATION TRANSFORMER Stn T SUPERGRID TRANSFORMER SGT	
* COMBINED VT/CT UNIT FOR METERING		UNIT TRANSFORMER UT	
REACTOR	¢	* NON-STANDARD SYMBOL	

DISCONNECTOR
(PANTOGRAPH TYPE)

QUADRATURE BOOSTER

DISCONNECTOR (KNEE TYPE)

SHORTING/DISCHARGE SWITCH

CAPACITOR
(INCLUDING HARMONIC FILTER)

SINGLE PHASE TRANSFORMER(BR) NEUTRAL AND PHASE CONNECTIONS

RESISTOR WITH INHERENT NON-LINEAR VARIABILITY, VOLTAGE DEPENDANT

PART E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS

GAS INSULATED BUSBAR BUSBAR	DOUBLE-BREAK /	
GAS BOUNDARY	EXTERNAL MOUNTED CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•
GAS/GAS BOUNDARY	STOP VALVE NORMALLY CLOSED	M
GAS/CABLE BOUNDARY	STOP VALVE NORMALLY OPEN	
GAS/AIR BOUNDARY	GAS MONITOR	
GAS/TRANSFORMER BOUNDARY	FILTER	
MAINTENANCE VALVE	QUICK ACTING COUPLING	→

PART E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION DIAGRAMS

	Basic Principles
(1)	Where practicable, all the HV Apparatus on any Connection Site shall be shown on one Operation Diagram . Provided the clarity of the diagram is not impaired, the layout shall represent as closely as possible the geographical arrangement on the Connection Site .
(2)	Where more than one Operation Diagram is unavoidable, duplication of identical information on more than one Operation Diagram must be avoided.
(3)	The Operation Diagram must show accurately the current status of the Apparatus e.g. whether commissioned or decommissioned. Where decommissioned, the associated switchbay will be labelled "spare bay".
(4)	Provision will be made on the Operation Diagram for signifying approvals, together with provision for details of revisions and dates.
(5)	Operation Diagrams will be prepared in A4 format or such other format as may be agreed with The Company .
(6)	The Operation Diagram should normally be drawn single line. However, where appropriate, detail which applies to individual phases shall be shown. For example, some HV Apparatus is numbered individually per phase.
	Apparatus To Be Shown On Operation Diagram
(1)	Busbars
(2)	Circuit Breakers
(3)	Disconnector (Isolator) and Switch Disconnecters (Switching Isolators)
(4)	Disconnectors (Isolators) - Automatic Facilities
(5)	Bypass Facilities
(6)	Earthing Switches
(7)	Maintenance Earths
(8)	Overhead Line Entries
(9)	Overhead Line Traps
(10)	Cable and Cable Sealing Ends
(11)	Generating Unit
(12)	Generator Transformers
(13)	Generating Unit Transformers, Station Transformers, including the lower voltage circuit-breakers.
(14)	Synchronous Compensators
(15)	Static Variable Compensators
(16)	Capacitors (including Harmonic Filters)
(17)	Series or Shunt Reactors (Referred to as "Inductors" at nuclear power station sites)
(18)	Supergrid and Grid Transformers
(19)	Tertiary Windings

Earthing and Auxiliary Transformers

Three Phase VT's

(20)

(21)

(22)	Single Phase VT & Phase Identity
(23)	High Accuracy VT and Phase Identity
(24)	Surge Arrestors/Diverters
(25)	Neutral Earthing Arrangements on HV Plant
(26)	Fault Throwing Devices
(27)	Quadrature Boosters
(28)	Arc Suppression Coils
(29)	Single Phase Transformers (BR) Neutral and Phase Connections
(30)	Current Transformers (where separate plant items)
(31)	Wall Bushings
(32)	Combined VT/CT Units
(33)	Shorting and Discharge Switches
(34)	Thyristor
(35)	Resistor with Inherent Non-Linear Variability, Voltage Dependent
(36)	Gas Zone

APPENDIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFILE AND OPERATING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT

ECC.A.3.1 Scope

The frequency response capability is defined in terms of **Primary Response**, **Secondary Response** and **High Frequency Response**. In addition to the requirements defined in ECC.6.3.7 this appendix defines the minimum frequency response requirements for:-

- (a) each Type C and Type D Power Generating Module
- (b) each DC Connected Power Park Module
- (c) each HVDC System

For the avoidance of doubt, this appendix does not apply to **Type A** and **Type B Power Generating Modules**.

OTSDUW Plant and Apparatus should facilitate the delivery of frequency response services provided by **Offshore Generating Units** and **Offshore Power Park Units**.

The functional definition provides appropriate performance criteria relating to the provision of **Frequency** control by means of **Frequency** sensitive generation in addition to the other requirements identified in ECC.6.3.7.

In this Appendix 3 to the ECC, for a Power Generating Module including a CCGT Module or a Power Park Module or DC Connected Power Park Module, the phrase Minimum Regulating Level applies to the entire CCGT Module or Power Park Module or DC Connected Power Park Module operating with all Generating Units Synchronised to the System.

The minimum **Frequency** response requirement profile is shown diagrammatically in Figure ECC.A.3.1. The capability profile specifies the minimum required level of **Frequency Response** Capability throughout the normal plant operating range.

ECC.A.3.2 Plant Operating Range

The upper limit of the operating range is the **Maximum Capacity** of the **Power Generating Module** or **Generating Unit** or **CCGT Module** or **HVDC Equipment**.

The Minimum Stable Operating Level may be less than, but must not be more than, 65% of the Maximum Capacity. Each Power Generating Module and/or Generating Unit and/or CCGT Module and/or Power Park Module or HVDC Equipment must be capable of operating satisfactorily down to the Minimum Regulating Level as dictated by System operating conditions, although it will not be instructed to below its Minimum Stable Operating Level. If a Power Generating Module or Generating Unit or CCGT Module or Power Park Module, or HVDC Equipment is operating below Minimum Stable Operating Level because of high System Frequency, it should recover adequately to its Minimum Stable Operating Level as the System Frequency returns to Target Frequency so that it can provide Primary and Secondary Response from its Minimum Stable Operating Level if the System Frequency continues to fall. For the avoidance of doubt, under normal operating conditions steady state operation below the Minimum Stable Operating Level is not expected. The Minimum Regulating Level must not be more than 55% of Maximum Capacity.

In the event of a **Power Generating Module** or **Generating Unit** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** load rejecting down to no less than its **Minimum Regulating Level** it should not trip as a result of automatic action as detailed in BC3.7. If the load rejection is to a level less than the **Minimum Regulating Level** then it is accepted that the condition might be so severe as to cause it to be disconnected from the **System**.

ECC.A.3.3 <u>Minimum Frequency Response Requirement Profile</u>

Figure ECC.A.3.1 shows the minimum **Frequency** response capability requirement profile diagrammatically for a 0.5 Hz change in **Frequency**. The percentage response capabilities and loading levels are defined on the basis of the **Maximum Capacity** of the **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment**. Each **Power Generating Module** or and/or **CCGT Module** or **Power Park Module** (including a **DC Connected Power Park Module**) and/or **HVDC Equipment** must be capable of operating in a manner to provide **Frequency** response at least to the solid boundaries shown in the figure. If the **Frequency** response capability falls within the solid boundaries, the **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** is providing response below the minimum requirement which is not acceptable. Nothing in this appendix is intended to prevent a **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** from being designed to deliver a **Frequency** response in excess of the identified minimum requirement.

The **Frequency** response delivered for **Frequency** deviations of less than 0.5 Hz should be no less than a figure which is directly proportional to the minimum **Frequency** response requirement for a **Frequency** deviation of 0.5 Hz. For example, if the **Frequency** deviation is 0.2 Hz, the corresponding minimum **Frequency** response requirement is 40% of the level shown in Figure ECC.A.3.1. The **Frequency** response delivered for **Frequency** deviations of more than 0.5 Hz should be no less than the response delivered for a **Frequency** deviation of 0.5 Hz.

Each Power Generating Module and/or CCGT Module and/or Power Park Module or HVDC Equipment must be capable of providing some response, in keeping with its specific operational characteristics, when operating between 95% to 100% of Maximum Capacity as illustrated by the dotted lines in Figure ECC.A.3.1.

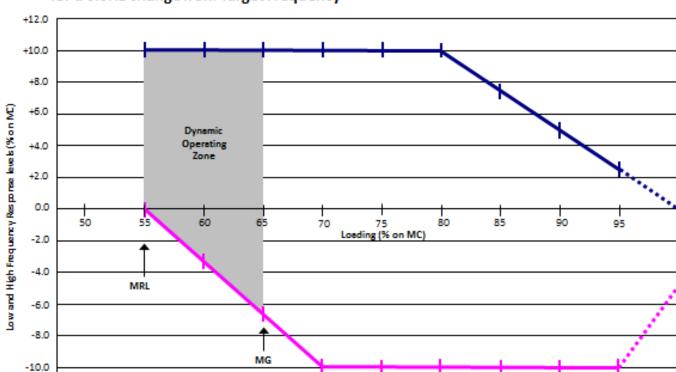
At the Minimum Stable Operating level, each Power Generating Module and/or CCGT Module and/or Power Park Module and/or HVDC Equipment is required to provide high and low frequency response depending on the System Frequency conditions. Where the Frequency is high, the Active Power output is therefore expected to fall below the Minimum Stable Operating level.

The Minimum Regulating Level is the output at which a Power Generating Module and/or CCGT Module and/or Power Park Module and/or HVDC Equipment has no High Frequency Response capability. It may be less than, but must not be more than, 55% of the Maximum Capacity. This implies that a Power Generating Module or CCGT Module or Power Park Module) or HVDC Equipment is not obliged to reduce its output to below this level unless the Frequency is at or above 50.5 Hz (cf BC3.7).

ECC.A.3.4 Testing of Frequency Response Capability

The frequency response capabilities shown diagrammatically in Figure ECC.A.3.1 are measured by taking the responses as obtained from some of the dynamic step response tests specified by **The Company** and carried out by **Generators** and HV**DC System** owners for compliance purposes. The injected signal is a step of 0.5Hz from zero to 0.5 Hz **Frequency** change, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.4 and ECC.A.3.5.

In addition to provide and/or to validate the content of **Ancillary Services Agreements** a progressive injection of a **Frequency** change to the plant control system (i.e. governor and load controller) is used. The injected signal is a ramp of 0.5Hz from zero to 0.5 Hz **Frequency** change over a ten second period, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.2 and ECC.A.3.3. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** or **Embedded HVDC System** not subject to a **Bilateral Agreement**, **The Company** may require the **Network Operator** within whose System the **Embedded Medium Power Station** or **Embedded HVDC System** is situated, to ensure that the **Embedded Person** performs the dynamic response tests reasonably required by **The Company** in order to demonstrate compliance within the relevant requirements in the **ECC**.


The **Primary Response** capability (P) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 10 and 30 seconds after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2. This increase in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** fall as illustrated by the response from Figure ECC.A.3.2.

The **Secondary Response** capability (S) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 30 seconds and 30 minutes after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2.

The **High Frequency Response** capability (H) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the decrease in **Active Power** output provided 10 seconds after the start of the ramp injection and sustained thereafter as illustrated diagrammatically in Figure ECC.A.3.3. This reduction in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** rise as illustrated by the response in Figure ECC.A.3.2.

ECC.A.3.5 Repeatability of Response

When a **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** has responded to a significant **Frequency** disturbance, its response capability must be fully restored as soon as technically possible. Full response capability should be restored no later than 20 minutes after the initial change of **System Frequency** arising from the **Frequency** disturbance.

Primary / Secondary

Plant dependant requirement

-12.0

MC - Maximum Capacity

MG - Minimum Generation

MRL - Minimum Regulating Level

Figure ECC.A.3.1 – Minimum Frequency Response Capability Requirement Profile for a 0.5Hz change from Target Frequency

Figure ECC.A.3.2 – Interpretation of Primary and Secondary Response Service Values

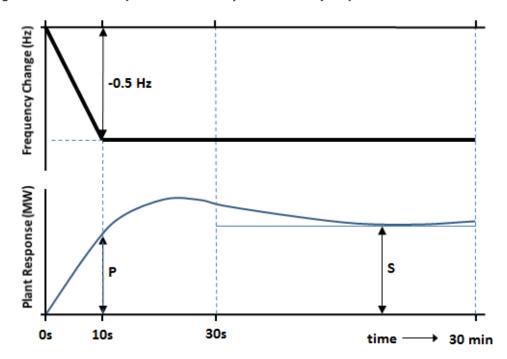


Figure ECC.A.3.3 – Interpretation of High Frequency Response Service Values

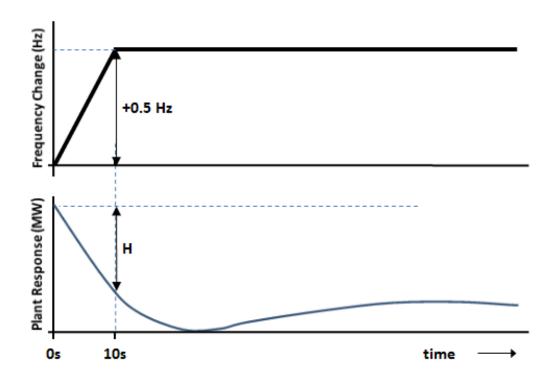


Figure ECC.A.3.4 - Interpretation of Low Frequency Response Capability Values

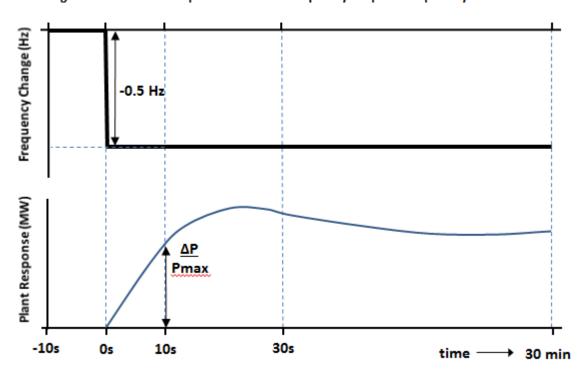
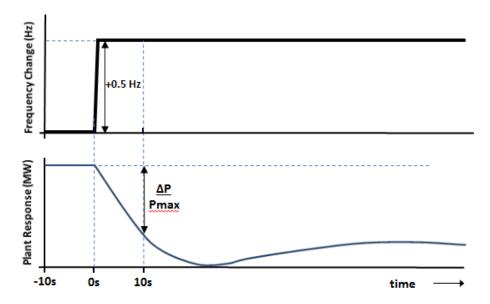



Figure ECC.A.3.5 – Interpretation of High Frequency Response Capability Values

ECC.4 - APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS

FAULT RIDE THROUGH REQUIREMENTS FOR TYPE B, TYPE C AND TYPE D POWER GENERATING MODULES (INCLUDING OFFSHORE POWER PARK MODULES WHICH ARE EITHER AC CONNECTED POWER PARK MODULES), HVDC SYSTEMS AND OTSDUW PLANT AND APPARATUS

ECC.A.4A.1 Scope

The **Fault Ride Through** requirements are defined in ECC.6.3.15. This Appendix provides illustrations by way of examples only of ECC.6.3.15.1 to ECC.6.3.15.10 and further background and illustrations and is not intended to show all possible permutations.

ECC.A.4A.2 Short Circuit Faults At Supergrid Voltage On The Onshore Transmission System Up To 140ms In Duration

For short circuit faults at **Supergrid Voltage** on the **Onshore Transmission System** (which could be at an **Interface Point**) up to 140ms in duration, the **Fault Ride Through** requirement is defined in ECC.6.3.15. In summary any **Power Generating Module** (including a **DC Connected Power Park Module**) or **HVDC System** is required to remain connected and stable whilst connected to a healthy circuit. Figure ECC.A.4.A.2 illustrates this principle.

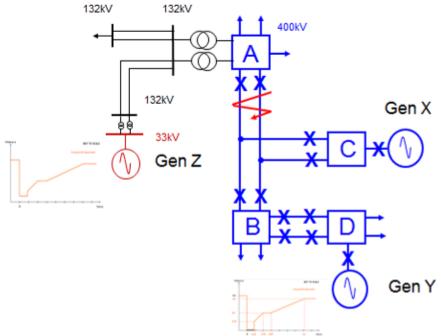


Figure ECC.A.4.A.2

In Figure ECC.A.4.A.2 a solid three phase short circuit fault is applied adjacent to substation A resulting in zero voltage at the point of fault. All circuit breakers on the faulty circuit (Lines ABC) will open within 140ms resulting in Gen X tripping. The effect of this fault, due to the low impedance of the network, will be the observation of a low voltage at each substation node across the **Total System** until the fault has been cleared. In this example, Gen Y and Gen Z (an Embedded Generator) would need to remain connected and stable as both are still connected to the **Total System** and remain connected to healthy circuits .

The criteria for assessment is based on a voltage against time curve at each **Grid Entry Point** or **User System Entry Point**. The voltage against time curve at the **Grid Entry Point** or **User System Entry Point** varies for each different type and size of **Power Generating Module** as detailed in ECC.6.3.15.2. – ECC.6.3.15.7.

The voltage against time curve represents the voltage profile at a **Grid Entry Point or User System Entry Point** that would be obtained by plotting the voltage at that **Grid Entry Point** or **User System Entry Point** before during and after the fault. This is not to be confused with a voltage duration curve (as defined under ECC.6.3.15.9) which represents a voltage level and associated time duration.

The post fault voltage at a **Grid Entry Point** or **User System Entry Point** is largely influenced by the topology of the network rather than the behaviour of the **Power Generating Module** itself. The **EU Generator** therefore needs to ensure each **Power Generating Module** remains connected and stable for a close up solid three phase short circuit fault for 140ms at the **Grid Entry Point** or **User System Entry Point**.

Two examples are shown in Figure EA.4.2(a) and Figure EA4.2(b). In Figure EA.4.2(a) the post fault profile is above the heavy black line. In this case the **Power Generating Module** must remain connected and stable. In Figure EA4.2(b) the post fault voltage dips below the heavy black line in which case the **Power Generating Module** is permitted to trip.

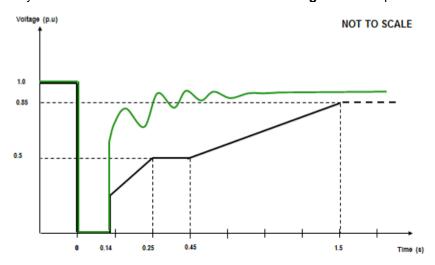


Figure EA.4.2(a)

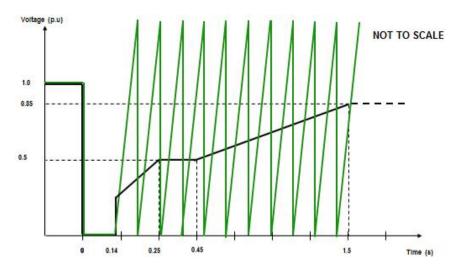


Figure EA.4.2(b)

The process for demonstrating **Fault Ride Through** compliance against the requirements of ECC.6.3.15 is detailed in ECP.A.3.5 and ECP.A.6.7 (as applicable).

ECC.A.4A.3 Supergrid Voltage Dips On The Onshore Transmission System Greater Than 140ms In Duration

ECC.A.4A3.1 Requirements applicable to **Synchronous Power Generating Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

For balanced Supergrid Voltage dips on the Onshore Transmission System having durations greater than 140ms and up to 3 minutes, the Fault Ride Through requirement is defined in ECC.6.3.15.9.2.1(a) and Figure ECC.6.3.15.9(a) which is reproduced in this Appendix as Figure EA.4.3.1 and termed the voltage-duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the Onshore Transmission System (or User System if located Onshore) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected Synchronous Power Generating Modules must withstand or ride through.

Figures EA.4.3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

NOT TO SCALE

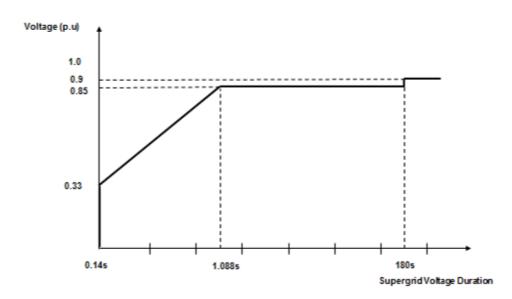


Figure EA.4.3.1

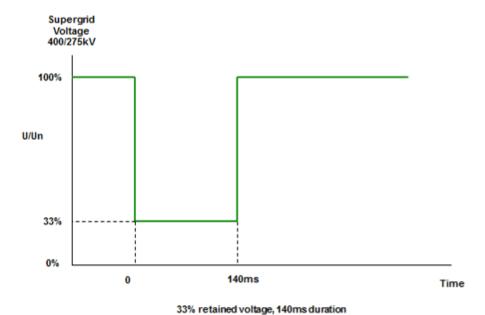
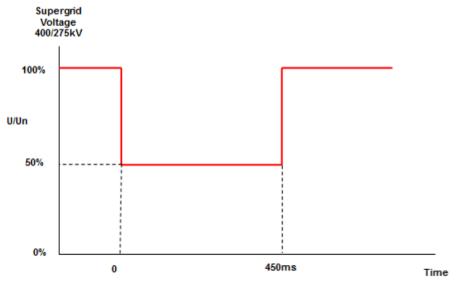



Figure EA.4.3.2 (a)

50% retained voltage, 450ms duration

Figure EA.4.3.2 (b)

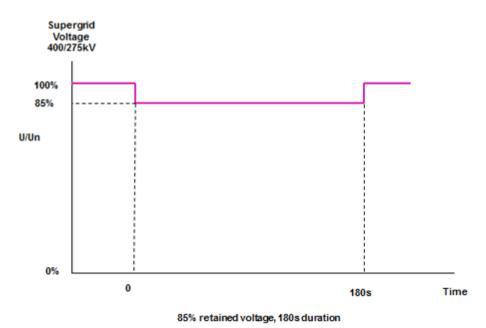


Figure EA.4.3.2 (c)

ECC.A.4A3.2 Requirements applicable to **Power Park Modules** or **OTSDUW Plant and Apparatus** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** (which could be at an **Interface Point**) having durations greater than 140ms and up to 3 minutes the **Fault Ride Through** requirement is defined in ECC.6.3.15.9.2.1(b) and Figure ECC.6.3.15.9(b) which is reproduced in this Appendix as Figure EA.4.3.3 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected **Power Park Modules** or **OTSDUW Plant and Apparatus** must withstand or ride through.

Figures EA.4.3.4 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

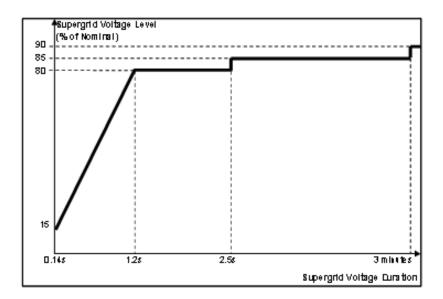
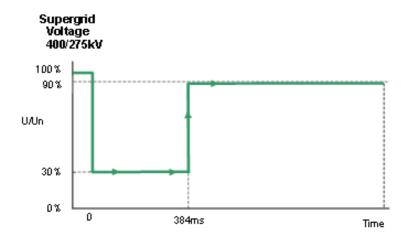
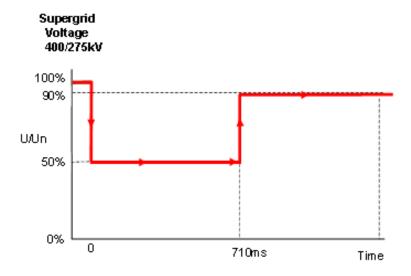




Figure EA.4.3.3

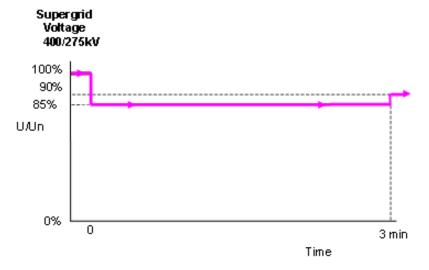

30% retained voltage, 384ms duration

Figure EA.4.3.4(a)

50% retained voltage, 710ms duration

Figure EA.4.3.4 (b)

85% retained voltage, 3 minutes duration

Figure EA.4.3.4 (c)

APPENDIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC DISCONNECTION OF SUPPLIES AT LOW FREQUENCY

ECC.A.5.1 Low Frequency Relays

ECC.A.5.1.1 The **Low Frequency Relays** to be used shall have a setting range of 47.0 to 50Hz and be suitable for operation from a nominal AC input of 63.5, 110 or 240V. The following-parameters specify the requirements of approved **Low Frequency Relays**:

(a) Frequency settings: 47-50Hz in steps of 0.05Hz or better, preferably 0.01Hz;(b) Operating time: Relay operating time shall not be more than 150 ms;

(c) Voltage lock-out: Selectable within a range of 55 to 90% of nominal voltage;

(d) Direction Tripping interlock for forward or reverse power flow capable of

being set in either position or off

(e) Facility stages: One or two stages of **Frequency** operation;

(f) Output contacts: Two output contacts per stage to be capable of repetitively

making and breaking for 1000 operations:

(g) Accuracy: 0.01 Hz maximum error under reference environmental and

system voltage conditions.

0.05 Hz maximum error at 8% of total harmonic distortion

Electromagnetic Compatibility Level.

In the case of **Network Operators** who are **GB Code Users**, the above requirements only apply to a relay (if any) installed at the **EU Grid Supply Point**. **Network Operators** who are also **GB Code Users** should continue to satisfy the requirements for low frequency relays as specified in the **CCs** as applicable to their **System**.

ECC.A.5.2 <u>Low Frequency Relay Voltage Supplies</u>

- ECC.A.5.2.1 It is essential that the voltage supply to the **Low Frequency Relays** shall be derived from the primary **System** at the supply point concerned so that the **Frequency** of the **Low Frequency Relays** input voltage is the same as that of the primary **System**. This requires either:
 - (a) the use of a secure supply obtained from voltage transformers directly associated with the grid transformer(s) concerned, the supply being obtained where necessary via a suitable automatic voltage selection scheme; or
 - (b) the use of the substation 240V phase-to-neutral selected auxiliary supply, provided that this supply is always derived at the supply point concerned and is never derived from a standby supply **Power Generating Module** or from another part of the **User System**.

ECC.A.5.3 <u>Scheme Requirements</u>

ECC.A.5.3.1 The tripping facility should be engineered in accordance with the following reliability considerations:

(a) Dependability

Failure to trip at any one particular **Demand** shedding point would not harm the overall operation of the scheme. However, many failures would have the effect of reducing the amount of **Demand** under low **Frequency** control. An overall reasonable minimum requirement for the dependability of the **Demand** shedding scheme is 96%, i.e. the average probability of failure of each **Demand** shedding point should be less than 4%. Thus the **Demand** under low **Frequency** control will not be reduced by more than 4% due to relay failure.

(b) Outages

Low **Frequency Demand** shedding schemes will be engineered such that the amount of **Demand** under control is as specified in Table ECC.A.5.5.1a and is not reduced unacceptably during equipment outage or maintenance conditions.

ECC.A.5.3.2 The total operating time of the scheme, including circuit breakers operating time, shall where reasonably practicable, be less than 200 ms. For the avoidance of doubt, the replacement of plant installed prior to October 2009 will not be required in order to achieve lower total scheme operating times.

ECC.A.5.4 Low Frequency Relay Testing

ECC.A.5.4.1 **Low Frequency Relays** installed and commissioned after 1st January 2007 shall be type tested in accordance with and comply with the functional test requirements for **Frequency Protection** contained in Energy Networks Association Technical Specification 48-6-5 Issue 1 dated 2005 "ENA **Protection** Assessment Functional Test Requirements – Voltage and Frequency **Protection**".

For the avoidance of doubt, **Low Frequency Relays** installed and commissioned before 1st January 2007 shall comply with the version of ECC.A.5.1.1 applicable at the time such **Low Frequency Relays** were commissioned.

- ECC.A.5.4.2 Each **Non-Embedded Customer** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- ECC.A.5.4.3 Each **Network Operator** and **Relevant Transmission Licensee** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.

ECC.A.5.5 Scheme Settings

Table CC.A.5.5.1a shows, for each Transmission Area, the percentage of Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak Demand that each Network Operator whose System is connected to the Onshore Transmission System within such Transmission Area shall disconnect by Low Frequency Relays at a range of frequencies. Where a Network Operator's System is connected to the National Electricity Transmission System in more than one Transmission Area, the settings for the Transmission Area in which the majority of the Demand is connected shall apply.

Frequency Hz	% Demand disconnection for each Network Operator in Transmission Area		
	NGET	SPT	SHETL
48.8	5		
48.75	5		
48.7	10		
48.6	7.5		10
48.5	7.5	10	
48.4	7.5	10	10
48.2	7.5	10	10
48.0	5	10	10
47.8	5		
Total % Demand	60	40	40

Table ECC.A.5.5.1a

Note – the percentages in table ECC.A.5.5.1a are cumulative such that, for example, should the frequency fall to 48.6 Hz in **NGET's Transmission Area**, 27.5% of the total **Demand** connected to the **National Electricity Transmission System** in **NGET's Transmission Area** shall be disconnected by the action of **Low Frequency Relays**.

The percentage **Demand** at each stage shall be allocated as far as reasonably practicable. The cumulative total percentage **Demand** is a minimum.

- ECC.A.5.5.2 In the case of a Non-Embedded Customer (who is also an EU Code User) the percentage of Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak Demand that each Non-Embedded Customer whose System is connected to the Onshore Transmission System which shall be disconnected by Low Frequency Relays shall be in accordance with OC6.6 and the Bilateral Agreement.
- ECC.A.5.6 Connection and Reconnection
- ECC.A.5.6.1 As defined under OC.6.6 once automatic low **Frequency Demand Disconnection** has taken place, the **Network Operator** on whose **User System** it has occurred, will not reconnect until **The Company** instructs that **Network Operator** to do so in accordance with OC6. The same requirement equally applies to **Non-Embedded Customers**.
- ECC.A.5.6.2 Once **The Company** instructs the **Network Operator** or **Non Embedded Customer** to reconnect to the **National Electricity Transmission System** following operation of the **Low Frequency Demand Disconnection** scheme it shall do so in accordance with the requirements of ECC.6.2.3.10 and OC6.6.

- Retwork Operators or Non Embedded Customers shall be capable of being remotely disconnected from the National Electricity Transmission System when instructed by The Company. Any requirement for the automated disconnection equipment for reconfiguration of the National Electricity Transmission System in preparation for block loading and the time required for remote disconnection shall be specified by The Company in accordance with the terms of the Bilateral Agreement.
- ECC.A.5.6.4 During **System Restoration**, the **Total System** may be operated outside of **Licence Standards** as provided for in OC9.4.3. During such periods, on or after 31 December 2026, **Transmission Licensees** in accordance with the requirements of the **STC**, **Network Operators** and **Non-Embedded Customers** shall have the remote capability to inhibit and restore the operation of their **Low Frequency Relays** upon instruction from **The Company** as provided for in OC9.5.7(a).

APPENDIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS POWER GENERATING MODULES,

ECC.A.6.1 Scope

- ECC.A.6.1.1 This Appendix sets out the performance requirements of continuously acting automatic excitation control systems for Type C and Type D Onshore Synchronous Power Generating Modules that must be complied with by the User. This Appendix does not limit any site specific requirements where in The Company's reasonable opinion these facilities are necessary for system reasons.
- Where the requirements may vary the likely range of variation is given in this Appendix. It may be necessary to specify values outside this range where **The Company** identifies a system need, and notwithstanding anything to the contrary **The Company** may specify values outside of the ranges provided in this Appendix 6. The most common variations are in the on-load excitation ceiling voltage requirements and the response time required of the **Exciter**. Actual values will be included in the **Bilateral Agreement**.
- ECC.A.6.1.3 Should an **EU Generator** anticipate making a change to the excitation control system it shall notify **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **EU Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- ECC.A.6.2 Requirements
- ECC.A.6.2.1 The Excitation System of a Type C or Type D Onshore Synchronous Power Generating Module shall include an excitation source (Exciter), and a continuously acting Automatic Voltage Regulator (AVR) and shall meet the following functional specification. Type D Synchronous Power Generating Modules are also required to be fitted with a Power System Stabiliser in accordance with the requirements of ECC.A.6.2.5.
- ECC.A.6.2.3 Steady State Voltage Control
- ECC.A.6.2.3.1 An accurate steady state control of the **Onshore Synchronous Power Generating Module** pre-set **Synchronous Generating Unit** terminal voltage is required. As a measure of the accuracy of the steady-state voltage control, the **Automatic Voltage Regulator** shall have static zero frequency gain, sufficient to limit the change in terminal voltage to a drop not exceeding 0.5% of rated terminal voltage, when the output of a **Synchronous Generating Unit** within an **Onshore Synchronous Power Generating Module** is gradually changed from zero to rated MVA output at rated voltage, **Active Power** and **Frequency**.
- ECC.A.6.2.4 Transient Voltage Control
- ECC.A.6.2.4.1 For a step change from 90% to 100% of the nominal **Onshore Synchronous Generating**Unit terminal voltage, with the **Onshore Synchronous Generating Unit** on open circuit, the Excitation System response shall have a damped oscillatory characteristic. For this characteristic, the time for the **Onshore Synchronous Generating Unit** terminal voltage to first reach 100% shall be less than 0.6 seconds. Also, the time to settle within 5% of the voltage change shall be less than 3 seconds.
- ECC.A.6.2.4.2 To ensure that adequate synchronising power is maintained, when the **Onshore Power Generating Module** is subjected to a large voltage disturbance, the **Exciter** whose output is varied by the **Automatic Voltage Regulator** shall be capable of providing its achievable upper and lower limit ceiling voltages to the **Onshore Synchronous Generating Unit** field in a time not exceeding that specified in the **Bilateral Agreement**. This will normally be not less than 50 ms and not greater than 300 ms. The achievable upper and lower limit ceiling voltages may be dependent on the voltage disturbance.
- ECC.A.6.2.4.3 The Exciter shall be capable of attaining an Excitation System On Load Positive Ceiling Voltage of not less than a value specified in the Bilateral Agreement that will be:

not less than 2 per unit (pu)

normally not greater than 3 pu exceptionally up to 4 pu

of **Rated Field Voltage** when responding to a sudden drop in voltage of 10 percent or more at the **Onshore Synchronous Generating Unit** terminals. **The Company** may specify a value outside the above limits where **The Company** identifies a system need.

ECC.A.6.2.4.4 If a static type **Exciter** is employed:

- (i) the field voltage should be capable of attaining a negative ceiling level specified in the Bilateral Agreement after the removal of the step disturbance of ECC.A.6.2.4.3. The specified value will be 80% of the value specified in ECC.A.6.2.4.3. The Company may specify a value outside the above limits where The Company identifies a system need.
- (ii) the **Exciter** must be capable of maintaining free firing when the **Onshore Synchronous Generating Unit** terminal voltage is depressed to a level which may be between 20% to 30% of rated terminal voltage
- (iii) the Exciter shall be capable of attaining a positive ceiling voltage not less than 80% of the Excitation System On Load Positive Ceiling Voltage upon recovery of the Onshore Synchronous Generating Unit terminal voltage to 80% of rated terminal voltage following fault clearance. The Company may specify a value outside the above limits where The Company identifies a system need.
- (iv) the requirement to provide a separate power source for the **Exciter** will be specified if **The Company** identifies a **Transmission System** need.

ECC.A.6.2.5 Power Oscillations Damping Control

- ECC.A.6.2.5.1 To allow **Type D Onshore Power Generating Modules** to maintain second and subsequent swing stability and also to ensure an adequate level of low frequency electrical damping power, the **Automatic Voltage Regulator** of each **Onshore Synchronous Generating Unit** within each **Type D Onshore Synchronous Power Generating Module** shall include a **Power System Stabiliser** as a means of supplementary control.
- ECC.A.6.2.5.2 Whatever supplementary control signal is employed, it shall be of the type which operates into the **Automatic Voltage Regulator** to cause the field voltage to act in a manner which results in the damping power being improved while maintaining adequate synchronising power.
- ECC.A.6.2.5.3 The arrangements for the supplementary control signal shall ensure that the **Power System Stabiliser** output signal relates only to changes in the supplementary control signal and not the steady state level of the signal. For example, if generator electrical power output is chosen as a supplementary control signal then the **Power System Stabiliser** output should relate only to changes in the **Synchronous Generating Unit** electrical power output and not the steady state level of power output. Additionally the **Power System Stabiliser** should not react to mechanical power changes in isolation for example during rapid changes in steady state load or when providing frequency response.
- ECC.A.6.2.5.4 The output signal from the **Power System Stabiliser** shall be limited to not more than ±10% of the **Onshore Synchronous Generating Unit** terminal voltage signal at the **Automatic Voltage Regulator** input. The gain of the **Power System Stabiliser** shall be such that an increase in the gain by a factor of 3 shall not cause instability.
- ECC.A.6.2.5.5 The **Power System Stabiliser** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application.
- ECC.A.6.2.5.6 The **EU Generator** in respect of its **Type D Synchronous Power Generating Modules** will agree **Power System Stabiliser** settings with **The Company** prior to the on-load commissioning detailed in BC2.11.2(d). To allow assessment of the performance before on-load commissioning the **EU Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.1.

- ECC.A.6.2.5.7 The **Power System Stabiliser** must be active within the **Excitation System** at all times when **Synchronised** including when the **Under Excitation Limiter** or **Over Excitation Limiter** are active. When operating at low load when **Synchronising** or **De-Synchronising** an **Onshore Synchronous Generating Unit**, within a **Type D Synchronous Power Generating Module**, the **Power System Stabiliser** may be out of service.
- ECC.A.6.2.5.8 Where a **Power System Stabiliser** is fitted to a **Pumped Storage Unit** within a **Type D Synchronous Power Generating Module** it must function when the **Pumped Storage Unit** is in both generating and pumping modes. In addition, where a **Power System Stabiliser** is fitted to an **Electricity Storage Unit** within a **Type D Synchronous Electricity Storage Module**, it must function when the **Synchronous Electricity Storage Unit** is in both importing and exporting modes of operation.
- ECC.A.6.2.6 Overall Excitation System Control Characteristics
- ECC.A.6.2.6.1 The overall **Excitation System** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5 Hz will be judged to be acceptable for this application.
- ECC.A.6.2.6.2 The response of the Automatic Voltage Regulator combined with the Power System Stabiliser shall be demonstrated by injecting similar step signal disturbances into the Automatic Voltage Regulator reference as detailed in ECPA.5.2 and ECPA.5.4. The Automatic Voltage Regulator shall include a facility to allow step injections into the Automatic Voltage Regulator voltage reference, with the Onshore Type D Power Generating Module operating at points specified by The Company (up to rated MVA output). The damping shall be judged to be adequate if the corresponding Active Power response to the disturbances decays within two cycles of oscillation.
- ECC.A.6.2.6.3 A facility to inject a band limited random noise signal into the **Automatic Voltage Regulator** voltage reference shall be provided for demonstrating the frequency domain response of the **Power System Stabiliser**. The tuning of the **Power System Stabiliser** shall be judged to be adequate if the corresponding **Active Power** response shows improved damping with the **Power System Stabiliser** in combination with the **Automatic Voltage Regulator** compared with the **Automatic Voltage Regulator** alone over the frequency range 0.3Hz 2Hz.
- ECC.A.6.2.7 <u>Under-Excitation Limiters</u>
- ECC.A.6.2.7.1 The security of the power system shall also be safeguarded by means of MVAr Under Excitation Limiters fitted to the Synchronous Power Generating Module Excitation System. The Under Excitation Limiter shall prevent the Automatic Voltage Regulator reducing the Synchronous Generating Unit excitation to a level which would endanger synchronous stability. The Under Excitation Limiter shall operate when the excitation system is providing automatic control. The Under Excitation Limiter shall respond to changes in the Active Power (MW) the Reactive Power (MVAr) and to the square of the Synchronous Generating Unit voltage in such a direction that an increase in voltage will permit an increase in leading MVAr. The characteristic of the Under Excitation Limiter shall be substantially linear from no-load to the maximum Active Power output of the Onshore Power Generating Module at any setting and shall be readily adjustable.

- ECC.A.6.2.7.2 The performance of the **Under Excitation Limiter** shall be independent of the rate of change of the **Onshore Synchronous Power Generating Module** load and shall be demonstrated by testing as detailed in ECP.A.5.5. The resulting maximum overshoot in response to a step injection which operates the **Under Excitation Limiter** shall not exceed 4% of the **Onshore Synchronous Generating Unit** rated MVA. The operating point of the **Onshore Synchronous Generating Unit** shall be returned to a steady state value at the limit line and the final settling time shall not be greater than 5 seconds. When the step change in **Automatic Voltage Regulator** reference voltage is reversed, the field voltage should begin to respond without any delay and should not be held down by the **Under Excitation Limiter**. Operation into or out of the preset limit levels shall ensure that any resultant oscillations are damped so that the disturbance is within 0.5% of the **Onshore Synchronous Generating Unit** MVA rating within a period of 5 seconds.
- ECC.A.6.2.7.3 The **EU Generator** shall also make provision to prevent the reduction of the **Onshore Synchronous Generating Unit** excitation to a level which would endanger synchronous stability when the **Excitation System** is under manual control.
- ECC.A.6.2.8 Over-Excitation and Stator Current Limiters
- ECC.A.6.2.8.1 The settings of the **Over-Excitation Limiter** and stator current limiter, shall ensure that the **Onshore Synchronous Generating Unit** excitation is not limited to less than the maximum value that can be achieved whilst ensuring the **Onshore Synchronous Generating Unit** is operating within its design limits. If the **Onshore Synchronous Generating Unit** excitation is reduced following a period of operation at a high level, the rate of reduction shall not exceed that required to remain within any time dependent operating characteristics of the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.2 The performance of the **Over-Excitation Limiter**, shall be demonstrated by testing as described in ECP.A.5.6. Any operation beyond the **Over-Excitation Limit** shall be controlled by the **Over-Excitation Limiter** or stator current limiter without the operation of any **Protection** that could trip the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.3 The **EU Generator** shall also make provision to prevent any over-excitation restriction of the **Onshore Synchronous Generating Unit** when the **Excitation System** is under manual control, other than that necessary to ensure the **Onshore Power Generating Module** is operating within its design limits.

APPENDIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR AC CONNECTED ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT HVDC SYSTEMS AND REMOTE END HVDC CONVERTER STATIONS

ECC.A.7.1 Scope

- This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Onshore Power Park Modules, Onshore HVDC Converters Remote End HVDC Converter Stations and OTSDUW Plant and Apparatus at the Interface Point that must be complied with by the User. This Appendix does not limit any site specific requirements where in The Company's reasonable opinion these facilities are necessary for system reasons. The control performance requirements applicable to Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules are defined in Appendix E8.
- ECC.A.7.1.2 Proposals by **EU Generators** or **HVDC System Owners** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** or **HVDC System Owner** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- In the case of a **Remote End HVDC Converter** at a **HVDC Converter Station**, the control performance requirements shall be specified in the **Bilateral Agreement**. These requirements shall be consistent with those specified in ECC.6.3.2.4. In the case where the **Remote End HVDC Converter** is required to ensure the zero transfer of **Reactive Power** at the **HVDC Interface Point** then the requirements shall be specified in the **Bilateral Agreement** which shall be consistent with those requirements specified in ECC.A.8. In the case where a wider reactive capability has been specified in ECC.6.3.2.4, then the requirements consistent with those specified in ECC.A.7.2 shall apply with any variations being agreed between the **User** and **The Company**.

ECC.A.7.2 Requirements

The Company requires that the continuously acting automatic voltage control system for the Onshore Power Park Module, Onshore HVDC Converter or OTSDUW Plant and Apparatus shall meet the following functional performance specification. If a Network Operator has confirmed to The Company that its network to which an Embedded Onshore Power Park Module or Onshore HVDC Converter or OTSDUW Plant and Apparatus is connected is restricted such that the full reactive range under the steady state voltage control requirements (ECC.A.7.2.2) cannot be utilised, The Company may specify alternative limits to the steady state voltage control range that reflect these restrictions. Where the Network Operator subsequently notifies The Company that such restriction has been removed, The Company may propose a Modification to the Bilateral Agreement (in accordance with the CUSC contract) to remove the alternative limits such that the continuously acting automatic voltage control system meets the following functional performance specification. All other requirements of the voltage control system will remain as in this Appendix.

ECC.A.7.2.2 Steady State Voltage Control

ECC.A.7.2.2.1 The Onshore Power Park Module, Onshore HVDC Converter or OTSDUW Plant and Apparatus shall provide continuous steady state control of the voltage at the Onshore Grid Entry Point (or Onshore User System Entry Point if Embedded) (or the Interface Point in the case of OTSDUW Plant and Apparatus) with a Setpoint Voltage and Slope characteristic as illustrated in Figure ECC.A.7.2.2a.

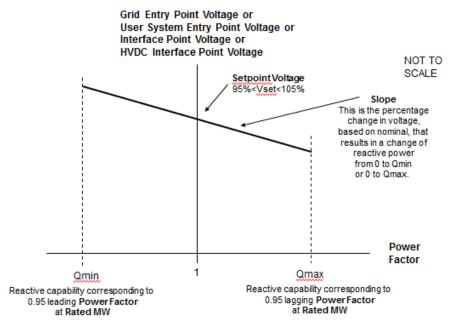


Figure ECC.A.7.2.2a

ECC.A.7.2.2.2 The continuously acting automatic control system shall be capable of operating to a Setpoint Voltage between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial Setpoint Voltage will be 100%. The tolerance within which this Setpoint Voltage shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. The Company may request the EU Generator or HVDC System Owner to implement an alternative Setpoint Voltage within the range of 95% to 105%. For Embedded Generators and Embedded HVDC System Owners the Setpoint Voltage will be discussed between The Company and the relevant Network Operator and will be specified to ensure consistency with ECC.6.3.4.

ECC.A.7.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **EU Generator** or **HVDC System Owner** to implement an alternative slope setting within the range of 2% to 7%. For **Embedded Generators** and **Onshore Embedded HVDC Converter Station Owners** the **Slope** setting will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with ECC.6.3.4.

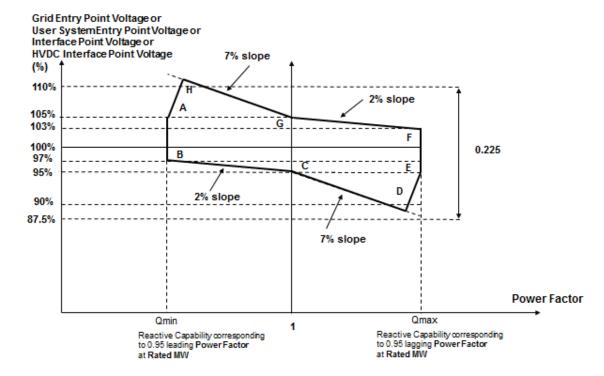
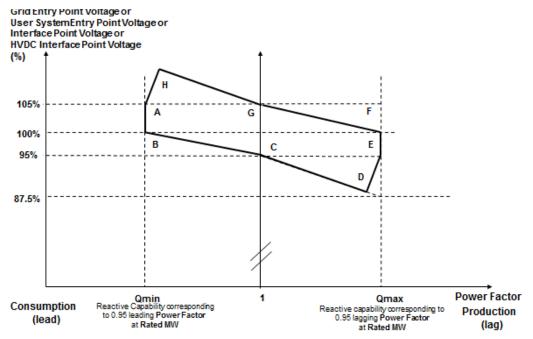
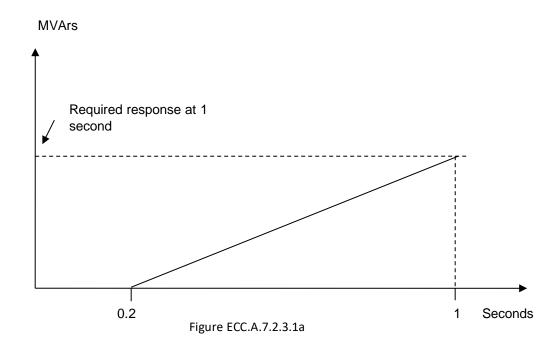


Figure ECC.A.7.2.2b




Figure ECC.A.7.2.2c

ECC.A.7.2.24 Figure ECC.A.7.2.2b shows the required envelope of operation for -, OTSDUW Plant and Apparatus, Onshore Power Park Modules and Onshore HVDC Converters except for those Embedded at 33kV and below or directly connected to the National Electricity **Transmission System** at 33kV and below. Figure ECC.A.7.2.2c shows the required envelope of operation for Onshore Power Park Modules Embedded at 33kV and below, or directly connected to the National Electricity Transmission System at 33kV and below. The enclosed area within points ABCDEFGH is the required capability range within which the Slope and Setpoint Voltage can be changed.

- ECC.A.7.2.2.5 Should the operating point of the, OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter deviate so that it is no longer a point on the operating characteristic (figure ECC.A.7.2.2a) defined by the target Setpoint Voltage and Slope, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.
- ECC.A.7.2.2.6 Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded (or Interface Point in the case of OTSDUW Plant and Apparatus) above 95%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or HVDC System shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable.
- ECC.A.7.2.2.7 For Onshore Grid Entry Point voltages (or Onshore User System Entry Point voltages if Embedded-or Interface Point voltages) below 95%, the lagging Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC **Converters** should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.7.2.2b and ECC.A.7.2.2c. For Onshore Grid Entry Point voltages (or User System Entry Point voltages if Embedded or Interface Point voltages) above 105%, the leading Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC System Converter should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at an Onshore Grid Entry Connection Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 95%, the Onshore Power Park Module, Onshore HVDC Converter shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or User System Entry Point voltage if Embedded or Interface Point voltage in the case of an OTSDUW Plant and Apparatus) above 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall maintain maximum leading reactive current output for further voltage increases.
- ECC.A.7.2.2.8 All **OTSDUW Plant and Apparatus** must be capable of enabling **EU Code Users** undertaking **OTSDUW** to comply with an instruction received from **The Company** relating to a variation of the **Setpoint Voltage** at the **Interface Point** within 2 minutes of such instruction being received.
- ECC.A.7.2.2.9 For **OTSDUW Plant and Apparatus** connected to a **Network Operator's System** where the **Network Operator** has confirmed to **The Company** that its **System** is restricted in accordance with ECC.A.7.2.1, clause ECC.A.7.2.2.8 will not apply unless **The Company** can reasonably demonstrate that the magnitude of the available change in **Reactive Power** has a significant effect on voltage levels on the **Onshore National Electricity Transmission System**.

ECC.A.7.2.3 Transient Voltage Control

- ECC.A.7.2.3.1 For an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the, OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.7.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the, OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from its maximum leading value to its maximum lagging value or vice versa and
 - 1 second where the step is sufficiently large to require a change in the steady state **Reactive Power** output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.7.2.2.6 or ECC.A.7.2.2.7);
 - (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
 - (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.7.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum Reactive Power.
 - (v) following the transient response, the conditions of ECC.A.7.2.2 apply.

ECC.A.7.2.3.2 OTSDUW Plant and Apparatus or Onshore Power Park Modules or Onshore HVDC Converters shall be capable of

(a) changing its **Reactive Power** output from its maximum lagging value to its maximum

- leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing its Reactive Power output from zero to its maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.7.2.3.1 where the change in Reactive Power output is in response to an on-load step change in Onshore Grid Entry Point or Onshore User System Entry Point voltage, or in the case of OTSDUW Plant and Apparatus an on-load step change in Transmission Interface Point voltage.

ECC.A.7.2.4 Power Oscillation Damping

- ECC.A.7.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.7.2.5 Overall Voltage Control System Characteristics
- ECC.A.7.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Onshore Grid Entry Point** voltage (or **Onshore User System Entry Point** voltage if **Embedded** or **Interface Point** voltage in the case of **OTSDUW Plant and Apparatus**).
- ECC.A.7.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter should also meet this requirement
- ECC.A.7.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.7.3 <u>Reactive Power Control</u>
- As defined in ECC.6.3.8.3.4, Reactive Power control mode of operation is not required in respect of Onshore Power Park Modules or OTSDUW Plant and Apparatus or Onshore HVDC Converters unless otherwise specified by The Company in coordination with the relevant Network Operator. However where there is a requirement for Reactive Power control mode of operation, the following requirements shall apply.
- The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.4 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the reactive power at the Grid Entry Point or User System Entry Point if Embedded to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- Any additional requirements for **Reactive Power** control mode of operation shall be specified by **The Company** in coordination with the relevant **Network Operator**..

ECC.A.7.4 Power Factor Control

- As defined in ECC.6.3.8.4.3, **Power Factor** control mode of operation is not required in respect of **Onshore Power Park Modules** or **OTSDUW Plant and Apparatus** or **Onshore HVDC Converters** unless otherwise specified by **The Company** in coordination with the relevant **Network Operator**. However where there is a requirement for **Power Factor** control mode of operation, the following requirements shall apply.
- The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of controlling the Power Factor at the Grid Entry Point or User System Entry Point (if Embedded) within the required Reactive Power range as specified in ECC.6.3.2.2.1 and ECC.6.3.2.4 to a specified target Power Factor. The Company shall specify the target Power Factor value (which shall be achieved within 0.01 of the set Power Factor), its tolerance and the period of time to achieve the target Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power. This Reactive Power tolerance shall be expressed by either an absolute value or by a percentage of the maximum Reactive Power of the Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter. The details of these requirements being pursuant to the terms of the Bilateral Agreement.
- ECC.A.7.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company** in coordination with the relevant **Network Operator**.

APPENDIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE POWER PARK MODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES

ECC.A.8.1 Scope

- ECC.A.8.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules that must be complied with by the EU Code User. This Appendix does not limit any site specific requirements that may be specified where in The Company's reasonable opinion these facilities are necessary for system reasons.
- These requirements also apply to Configuration 2 DC Connected Power Park Modules. In the case of a Configuration 1 DC Connected Power Park Module the technical performance requirements shall be specified by The Company. Where the EU Generator in respect of a DC Connected Power Park Module has agreed to a wider reactive capability range as defined under ECC.6.3.2.5 and ECC.6.2.3.6 then the requirements that apply will be specified by The Company and which shall reflect the performance requirements detailed in ECC.A.8.2 below but with different parameters such as droop and Setpoint Voltage.
- Proposals by **EU Generators** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

ECC.A.8.2 Requirements

ECC.A.8.2.1 The Company requires that the continuously acting automatic voltage control system for the Configuration 2 AC connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module shall meet the following functional performance specification.

ECC.A.8.2.2 Steady State Voltage Control

ECC.A.8.2.2.1 The Configuration 2 AC connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module shall provide continuous steady state control of the voltage at the Offshore Connection Point with a Setpoint Voltage and Slope characteristic as illustrated in Figure ECC.A.8.2.2a.

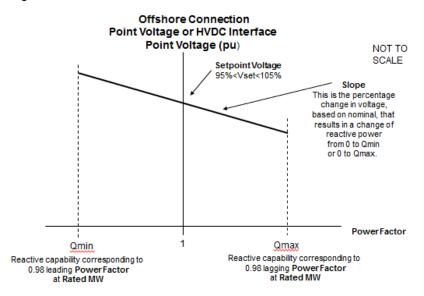


Figure ECC.A.8.2.2a

- ECC.A.8.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **EU Generator** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%.
- ECC.A.8.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **EU Generator** to implement an alternative slope setting within the range of 2% to 7%.

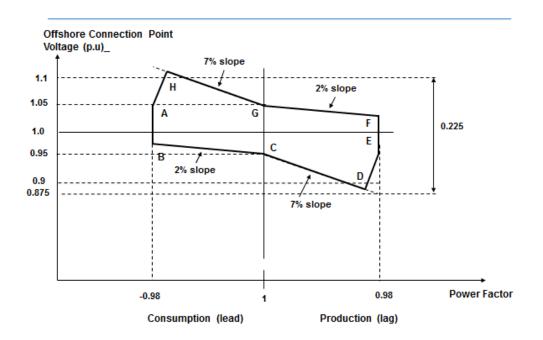
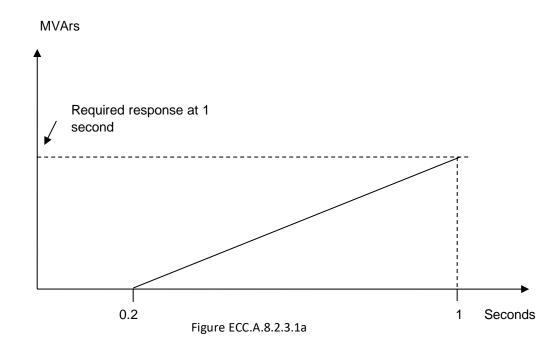


Figure ECC.A.8.2.2b


- ECC.A.8.2.2.4 Figure ECC.A.8.2.2b shows the required envelope of operation for **Configuration 2 AC** connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module. The enclosed area within points ABCDEFGH is the required capability range within which the **Slope** and **Setpoint Voltage** can be changed.
- ECC.A.8.2.2.5 Should the operating point of the **Configuration 2 AC connected Offshore Power Park or Configuration 2 DC Connected Power Park Module** deviate so that it is no longer a point on the operating characteristic (Figure ECC.A.8.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.

- ECC.A.8.2.2.6 Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage above 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figure ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage below 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.8.2.2b.
- ECC.A.8.2.2.7 For Offshore Grid Entry Point or User System Entry Point or HVDC Interface Point voltages below 95%, the lagging Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.8.2.2b. For Offshore Grid Entry Point or Offshore User System Entry Point voltages or HVDC Interface Point voltages above 105%, the leading Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage below 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage above 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading reactive current output for further voltage increases.

ECC.A.8.2.3 Transient Voltage Control

- ECC.A.8.2.3.1 For an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.8.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from its maximum leading value to its maximum lagging value or vice versa and

- 1 second where the step is sufficiently large to require a change in the steady state Reactive Power output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.8.2.2.6 or ECC.A.8.2.2.7);
- (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
- (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.8.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum **Reactive Power**.
- (v) following the transient response, the conditions of ECC.A.8.2.2 apply.

ECC.A.8.2.3.2 Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall be capable of

- (a) changing their Reactive Power output from maximum lagging value to maximum leading value, or vice versa, then reverting back to the initial level of Reactive Power output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing Reactive Power output from zero to maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.8.2.3.1 where the change in **Reactive Power** output is in response to an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage.

ECC.A.8.2.4 Power Oscillation Damping

- ECC.A.8.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **Generator** or **HVDC System Owner** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.8.2.5 Overall Voltage Control System Characteristics
- ECC.A.8.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Offshore Grid Entry Point** or **Offshore User System Entry Point** or **HVDC Interface Point** voltage.
- ECC.A.8.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module should also meet this requirement
- ECC.A.8.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.8.3 Reactive Power Control
- Reactive Power control mode of operation is not required in respect of Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules unless otherwise specified by The Company. However where there is a requirement for Reactive Power control mode of operation, the following requirements shall apply.
- Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.8.2 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the Reactive Power at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- ECC.A.8.3.3 Any additional requirements for **Reactive Power** control mode of operation shall be specified by **The Company**.
- ECC.A.8.4 Power Factor Control
- Power Factor control mode of operation is not required in respect of Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules unless otherwise specified by The Company. However where there is a requirement for Power Factor control mode of operation, the following requirements shall apply.
- Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of controlling the Power Factor at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point within the required Reactive Power range as specified in ECC.6.3.2.8.2 with a target Power Factor. The Company shall specify the target Power Factor (which shall be achieved to within 0.01 of the set Power Factor), its tolerance and the period of time to achieve the target

Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power. This Reactive Power tolerance shall be expressed by either an absolute value or by a percentage of the maximum Reactive Power of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module. The details of these requirements being specified by The Company.

ECC.A.8.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company**.

< END OF EUROPEAN CONNECTION CONDITIONS >

OPERATING CODE NO. 6B

(OC6B)

EMBEDDED GENERATION CONTROL

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	<u>Page Number</u>
OC6B.1 INTRODUCTION	2
OC6B.2 OBJECTIVE	2
OC6B.3 SCOPE	2
OC6B.4 PROCEDURE FOR THE IMPLEMENTATION OF EMBEDDED GENERATION ON THE INSTRUCTIONS OF THE COMPANY	
OC6B.5 PRIORITIES FOR IMPLEMENTATION OF EMBEDDED GENERATION CONTINSTRUCTIONS	_
OC6B.6 OPERATION OF THE BALANCING MECHANISM DURING EMBEDDED GEN CONTROL	

OC6B.1 INTRODUCTION

OC6B.1.1 Operating Code No.6B ("OC6B") is concerned with the provisions to be made by Network

Operators to reduce the Active Power output from Embedded Power Stations;

- a) at times when there is a large amount of Active Power on the System from generation plant that has low (or no) inertia, to secure against the largest loss of Load, as determined under BC1.5.5; and
- b) in emergency circumstances including in the event of breakdown or operating problems (such as in respect of **System Frequency**, **System** voltage levels or **System** thermal overloads) on any part of the **National Electricity Transmission System**.
- OC6B.1.2 OC6B deals with Embedded Generation Control instructed by The Company.

The term **"Embedded Generation Control**" is used to describe a reduction in the **Active**

Power output of **Embedded Power Stations**. **Embedded Power Stations** that may be subject to **Embedded Generation Control** include **Embedded Power Stations** connected to a **Network Operator's System** and whose owners or operators are not **BM Participants**.

- OC6B.1.3 The procedure set out in **OC6B** includes a system of warnings to give advance notice, where possible, of **Embedded Generation Control** that may be required by **The Company** under this **OC6B**.
- OC6B.1.4 Data relating to **Embedded Generation Control** should include details relating to **Active Power** measured in Megawatts (MW).
- OC6B.1.5 The Electricity Supply Emergency Code, as reviewed and published from time to time by the appropriate government department for energy emergencies, provides that in certain circumstances consumers are given a certain degree of "protection" when rota disconnections are implemented pursuant to a direction under the Energy Act 1976. Where relevant in terms of the incidental disconnection of demand as part of **Embedded Generation Control**, no such protection can be given in relation to **Embedded Generation Control** under the **Grid Code**.

OC6B.2 OBJECTIVE

OC6B.2.1 The overall objective of **OC6B** is concerned with the provisions to be made by **Network Operators** to reduce the **Active Power** output from **Embedded Power Stations** that will either avoid or relieve operational issues, in whole or in part, and thereby to enable **The Company** to instruct **Embedded Generation Control** in a manner that does not unduly discriminate against, or unduly prefer, any one or any group of **Generators** or **Suppliers** or **Network Operators**.

- OC6B.3 SCOPE
- OC6B.3.1 OC6B applies to The Company and to Users which in OC6B means:
 - (a) Generators; and
 - (b) Network Operators.
- OC6B.3.2 Explanation

- (a) In all situations envisaged in OC6B, Embedded Generation Control will be implemented by one or more Network Operators; and
- (b) **Embedded Generation Control** in all situations relates to the physical organisation of the **Total System**, and not to any contractual arrangements that may exist.
- OC6B.3.2.2 Where **Embedded Generation Control** instructions are issued by **The Company** these may:
 - a) require the **Network Operator** to achieve a reduction in **Active Power** output at specified **Embedded Power Station(s)**;
 - b) be for the Network Operator to achieve a reduction in Active Power output of Embedded Power Stations, supplied via one or more specified
 - Grid Supply Point(s), of a specified value; or
 - be for the Network Operator to achieve a reduction in Active Power output of Embedded Power Stations, supplied via one or more specified
 - **Grid Supply Point(s)**, of a specified proportion of the aggregate **Active Power** output compared to the **Active Power** output before such an instruction was issued.

In any case, reasonable endeavours shall be employed by the **Network Operator** to ensure that the reduction in **Active Power** output specified in the instruction is achieved, considering also the principles relating to prioritisation set out in OC6B.5.1 where appropriate. Even when instructed to do so by **The Company**, the **Network Operator** will not be required to reduce the **Active Power** output from one or more **Embedded Power Stations** by more than the **Active Power** output from those **Embedded Power Stations** supplied via the specified **Grid Supply Point(s)**.

- OC6B.3.2.3 **Network Operators** may where necessary (for example where timescales do not allow otherwise) implement **Embedded Generation Control** instructions by **Embedded Generation De-energisation** based on **Registered Capacity** so long as reasonable endeavours are employed by the **Network Operator** to ensure that the reduction in **Active Power** output specified in the instruction from **The Company** is achieved.
- OC6B.3.2.4 An instruction from **The Company** to the **Network Operator** will be given to allow the **Network Operator** to arrange with **Embedded Power Stations** subject to **Embedded Generation Control** to resume normal operation. Such arrangements shall not commence until such an instruction has been received.
- OC6B.3.2.5 The existence of any other arrangements for the management of **Embedded Power Stations** by a **Network Operator** will not relieve a **Network Operator** from the **Embedded Generation Control** provisions of this **OC6B**.

- OC6B.4 PROCEDURE FOR THE IMPLEMENTATION OF EMBEDDED GENERATION CONTROL ON THE INSTRUCTIONS OF THE COMPANY
- OC6B.4.1 A National Electricity Transmission System Warning High Risk of Embedded Generation Reduction will, where possible, be issued by The Company, as more particularly set out in OC7.4.8 and BC1.5.5 when The Company anticipates that it will or may issue Embedded Generation Control instruction(s).
- OC6B.4.2 When **The Company** anticipates that it will or may issue **Embedded Generation Control** instruction(s) within the following 30 minutes, **The Company** will, where possible, issue a **National Electricity Transmission System Warning Embedded Generation Control Imminent** in accordance with OC7.4.8.2 and OC7.4.8.11.
- OC6B.4.3 (a) Whether a National Electricity Transmission System Warning High Risk of Embedded Generation Reduction or National Electricity Transmission System Warning Embedded Generation Control Imminent has been issued or not, each Network Operator will abide by the instructions of The Company and will implement the instructions received in the timescales specified and without delay.
 - (b) Unless specified otherwise, **Embedded Generation Control** instructions shall be fulfilled within 30 minutes of an instruction being received from **The Company**.
- OC6B.4.4 Once an **Embedded Generation Control** instruction has been implemented by a **Network Operator**, the **Network Operator** may interchange the **Embedded Generators** who have been subject to **Embedded Generation Control** provided that the percentage or volume of **Active Power** reduction achieved at all times within the **Network Operator's System** does not change.
- OC6B.4.5 An instruction from **The Company** to the **Network Operator** will be given to allow the **Network Operator** to arrange with a **Generator** owning or operating an **Embedded Power Stations** subject to **Embedded Generation Control** to resume normal operation. Such arrangements shall not commence until such an instruction has been received.
- OC6B.4.6 Where **Embedded Generation Control** to manage events within the scope of **OC6B** is envisaged by **The Company** to be a prolonged requirement, **The Company** will notify the **Network Operator** of the expected duration.
- OC6B.4.7 Each **Network Operator** will notify **The Company** in writing that it has complied with **The Company's** instructions under **OC6B.5**, within five minutes of so doing, together with an estimation of the **Active Power** output reduction achieved, in MWs, by the **Embedded Generation Control**.
- OC6B.4.8 Each **Network Operator** will supply to **The Company** a revised estimate of the **Active Power** output reduction achieved, in MW, by the use of **Embedded Generation Control**within 30 minutes of complying with the instruction.
- OC6B.5 PRIORITIES FOR IMPLEMENTATION OF EMBEDDED GENERATION CONTROL INSTRUCTIONS
- OC6B.5.1 The implementation of an **Embedded Generation Control** instruction is at the reasonable discretion of each **Network Operator** to whom an instruction is given by **The Company**. In implementing an instruction and determining the order in which **Embedded Power Stations** are affected by it, it is expected that a **Network Operator** would respect the priority order set out in the table below unless it could be reasonably expected to be aware of other issues that would influence the implementation order including:
 - a) whether the **Embedded Generation Control** has been issued following a **National Electricity Transmission System Warning System NRAPM** or a **National Electricity Transmission System Warning Localised NRAPM**, and therefore any specific local circumstances that it is a requirement to address;

- b) the effectiveness of **Embedded Generation Control** actions to address the issues to be resolved;
- c) Interactions with other network considerations such as the participation of **Embedded Power Stations** in Active Network Management (ANM) or other automatic switching schemes, or in the provision of other **Ancillary Services**; and
- d) any other wider system issues and the potential consequences for **Users**, including environmental and safety concerns, and where applicable taking account of the incidence of such instructions.

All implementation decisions should be reasonable and based on the information available to the **Network Operator** at the time taking into account the leadtime available in the instruction issued by **The Company**

ORDER	CATEGORY OF GENERATION	COMMENT
1	Non-synchronous generation	Non-synchronous plant typically does not contribute towards system inertia hence is higher up the list due to the need to maintain system inertia, particularly in the scenario applicable to Embedded Generation Control where a very low demand situation coincides with high availability of non-synchronous generation.
		In the event that any alternatives to system inertia are available this should also be taken into account.
2	Synchronous generators without any associated demand	Lower down the list due to the need to maintain system inertia, particularly in a very low demand situation.
3	Generation with associated demand	For example, CHP installations, waste management facilities, and other industrial facilities with substantial on-site demand.
4	Generation associated with critical national infrastructure sites	Never envisaged to be selected.

OC6B.6 OPERATION OF THE BALANCING MECHANISM DURING EMBEDDED GENERATION CONTROL

Instructions issued by **The Company** to carry out **Embedded Generation Control** will constitute **Emergency Instructions** in accordance with BC2.9 and it may be necessary to depart from normal **Balancing Mechanism** operation in accordance with BC2 in issuing **Bid-Offer Acceptances**. **The Company** will inform affected **BM Participants** in accordance with the provisions of **OC7**.

BALANCING CODE NO. 1

(BC1)

PRE GATE CLOSURE PROCESS

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
BC1.1 INTRODUCTION	3
BC1.2 OBJECTIVE	3
BC1.3 SCOPE	3
BC1.4 SUBMISSION OF DATA	3
BC1.4.1 Communication With Users	3
BC1.4.2 Day Ahead Submissions	4
BC1.4.3 Data Revisions	7
BC1.4.4 Receipt Of BM Unit Data Prior To Gate Closure	7
BC1.4.5 BM Unit Defaulting, Validity And Consistency Checking	8
BC1.4.6 Special Provisions Relating To Interconnector Users	8
BC1.5 INFORMATION PROVIDED BY COMPANY	9
BC1.5.1 Demand Estimates	9
BC1.5.2 Indicated Margin And Indicated Imbalance	9
BC1.5.3 Provision Of Updated Information	9
BC1.5.4 Reserve And System Margin	9
BC1.5.5 System And Localised NRAPM (Negative Reserve Active Powe	er Margin)11
BC1.6 SPECIAL PROVISIONS RELATING TO NETWORK OPERATORS	12
BC1.6.1 User System Data From Network Operators	12
BC1.6.2 Notification Times To Network Operators	13
BC1.7 SPECIAL ACTIONS	13
BC1.8 PROVISION OF REACTIVE POWER CAPABILITY	13
APPENDIX 1 - BM UNIT DATA	15
BC1.A.1.1 Physical Notifications	15
BC1.A.1.3 Export And Import Limits	16
BC1.A.1.4 Bid Offer Data	17
BC1.A.1.5 Dynamic Parameters	18
BC1.A.1.6 CCGT Module Matrix	18
BC1.A.1.7 Cascade Hydro Scheme Matrix	20
BC1.A.1.8 Power Park Module Availability Matrix	20
BC1.A.1.9 Synchronous Power Generating Module Matrix	21
BC1.A.1.10 Aggregator Impact Matrix	23
Issue 6 Revision 33 BC1	11 June 2025

APPENDIX 2 - DATA TO BE MADE AVAILABLE BY THE COMPANY	24
BC1.A.2.1 Initial Day Ahead Demand Forecast	24
BC1.A.2.2 Initial Day Ahead Market Information	24
BC1.A.2.3 Current Day & Day Ahead Updated Market Information	24
APPENDIX 3 – EXTERNAL INTERCONNECTOR DATA	26
BC1.A.3 Reference Programme	26

BC1.1 <u>INTRODUCTION</u>

Balancing Code No1 (BC1) sets out the procedure for:

- (a) the submission of **BM Unit Data** and/or **Generating Unit Data** (which could be part of a **Power Generating Module**) by each **BM Participant**;
- (b) the submission of Interconnector data by each Interconnector Owner;
- (c) the submission of certain **System** data by each **Network Operator**; and
- (d) the provision of data by **The Company**,

in the period leading up to Gate Closure.

BC1.2 OBJECTIVE

The procedure for the submission of **BM Unit Data** and/or **Generating Unit Data** is intended to enable **The Company** to assess which **BM Units** and **Generating Units** (which could be part of a **Power Generating Module**) are expected to be operating in order that **The Company** can ensure (so far as possible) the integrity of the **National Electricity Transmission System**, and the security and quality of supply.

Where reference is made in this **BC1** to **Generating Units** and/or **Power Generating Modules** (unless otherwise stated) it only applies:

- (a) to each Generating Unit which forms part of the BM Unit of a Cascade Hydro Scheme;and
- (b) at an **Embedded Exemptable Large Power Station** where the relevant **Bilateral Agreement** specifies that compliance with **BC1** is required:
 - (i) to each **Generating Unit** which could be part of a **Synchronous Power Generating Module**, or
 - (ii) to each Power Park Module where the Power Station comprises Power Park Modules.

BC1.3 SCOPE

BC1 applies to The Company and to Users, which in this BC1 means:-

- (a) BM Participants;
- (b) Externally Interconnected System Operators; and
- (c) Network Operators.

BC1.4 SUBMISSION OF DATA

In the case of **Additional BM Units** or **Secondary BM Units** any data submitted by **Users** under this **BC1** must represent the value of the data at the relevant **GSP Group**.

In the case of all other **BM Units** or **Generating Units Embedded** in a **User System**, any data submitted by **Users** under this **BC1** must represent the value of the data at the relevant **Grid Supply Point**.

BC1.4.1 Communication With Users

(a) Submission of **BM Unit Data** and **Generating Unit Data** by **Users** to **The Company** specified in BC1.4.2 to BC1.4.4 (with the exception of BC1.4.2(f)) is to be by use of electronic data communications facilities, as provided for in CC.6.5.8 or ECC.6.5.8 (as applicable). However, data specified in BC1.4.2(c) and BC1.4.2(e) only, may be submitted by telephone or via the **Designated Information Exchange System**.

- (b) Submission of **Interconnector** data by **Interconnector Owners** to **The Company** is to be by use of electronic data communications facilities, as provided for in CC.6.5.8 or ECC.6.5.8 (as applicable).
- (c) In the event of a failure of the electronic data communication facilities, the data to apply in relation to a pre-Gate Closure period will be determined in accordance with the Data Validation, Consistency and Defaulting Rules, based on the most recent data received and acknowledged by The Company.
- (d) **Planned Maintenance Outages** will normally be arranged to take place during periods of low data transfer activity.
- (e) Upon any **Planned Maintenance Outage**, or following an unplanned outage described in BC1.4.1(b) (where it is termed a "failure") in relation to a pre-**Gate Closure** period:
 - (i) **BM Participants** should continue to act in relation to any period of time in accordance with the **Physical Notifications** current at the time of the start of the **Planned Maintenance Outage** or the computer system failure in relation to each such period of time subject to the provisions of BC2.5.1. Depending on when in relation to **Gate Closure** the planned or unplanned maintenance outage arises such operation will either be operation in preparation for the relevant output in real time, or will be operation in real time. No further submissions of **BM Unit Data** and/or **Generating Unit Data** (other than data specified in BC1.4.2(c) and BC1.4.2(e)) should be attempted. Plant failure or similar problems causing significant deviation from **Physical Notification** should be notified to **The Company** by the submission of a revision to **Export and Import Limits** in relation to the **BM Unit** and /or **Generating Unit** so affected;
 - (ii) Interconnector Owners should derive an Interconnector Reference Programme (as specified in BC1.A.3) based on the latest Physical Notifications notified by the Interconnector Users at the start of the Planned Maintenance Outage, or following an unplanned outage. The Interconnector Owners should communicate such latest Interconnector Reference Programme to The Company and continue to act in accordance with such latest Interconnector Reference Programme. No further submissions of Interconnector Reference Programme should be attempted until the end of the outage is declared.
 - (iii) during the outage, revisions to the data specified in BC1.4.2(c) and BC1.4.2(e) may be submitted. Communication between **Users Control Points** and **The Company** during the outage will be conducted by telephone; and
 - (iv) no data will be transferred from **The Company** to the **BMRA** until the communication facilities are re-established.

BC1.4.2 Day Ahead Submissions

Data for any **Operational Day** may be submitted to **The Company** up to several days in advance of the day to which it applies, as provided in the **Data Validation**, **Consistency and Defaulting Rules**. However, **Interconnector Users** must submit **Physical Notifications**, and any associated data as necessary, each day by 11:00 hours in respect of the next following **Operational Day** in order that the information used in relation to the capability of the respective **External Interconnection** is expressly provided. **The Company** shall not by the inclusion of this provision be prevented from utilising the provisions of BC1.4.5 if necessary.

The data may be modified by further data submissions at any time prior to **Gate Closure**, in accordance with the other provisions of **BC1**. The data to be used by **The Company** for operational planning will be determined from the most recent data that has been received by **The Company** by 11:00 hours on the day before the **Operational Day** to which the data applies, or from the data that has been defaulted at 11:00 hours on that day in accordance with BC1.4.5. Any subsequent revisions received by **The Company** under the Grid Code will also be utilised by **The Company**. In the case of all data items listed below, with the exception of item (e), **Dynamic Parameters** (Day Ahead), the latest submitted or defaulted data, as modified by any subsequent revisions, will be carried forward into operational timescales. The individual data items are listed below:

(a) Physical Notifications

Physical Notifications, being the data listed in **BC1** Appendix 1 under that heading, are required by **The Company** at 11:00 hours each day for each **Settlement Period** of the next following **Operational Day**, in respect of:

(1) BM Units:

- (i) with a **Demand Capacity** with a magnitude of 50MW or more in **NGET's Transmission Area** or 10MW or more in **SHETL's Transmission Area** or 30MW or more in **SPT's Transmission Area**; or
- (ii) comprising Generating Units (as defined in the Glossary and Definitions and not limited by BC1.2) and/or Power Generating Modules and/or CCGT Modules and/or Power Park Modules in each case at Large Power Stations, Medium Power Stations and Small Power Stations where such Small Power Stations are directly connected to the Transmission System; or
- (iii) where the **BM Participant** chooses to submit **Bid-Offer Data** in accordance with BC1.4.2(d) for **BM Units** not falling within (i) or (ii) above,

and

(2) each **Generating Unit** where applicable under BC1.2.

Physical Notifications may be submitted to The Company by BM Participants, for the BM Units, and Generating Units, specified in this BC1.4.2(a) at an earlier time, or BM Participants may rely upon the provisions of BC1.4.5 to create the Physical Notifications by data defaulting pursuant to the Grid Code utilising the rules referred to in that paragraph at 11:00 hours in any day.

Physical Notifications (which must comply with the limits on maximum rates of change listed in BC1 Appendix 1) must, subject to the following operating limits, represent the User's best estimate of expected input or output of Active Power, except where a BM Unit is affected by a Stage 2 or higher Network Gas Supply Emergency load shedding event. Physical Notifications shall be prepared in accordance with Good Industry Practice. Physical Notifications for any BM Unit, and any Generating Units, should normally be consistent with the Dynamic Parameters and Export and Import Limits and must not reflect any BM Unit or any Generating Units, proposing to operate outside the limits of its Demand Capacity and (and in the case of BM Units) Generation Capacity and, in the case of a BM Unit comprising a Generating Unit (as defined in the Glossary and Definitions and not limited by BC1.2) and/or Power Generating Module and/or CCGT Module and/or Power Park Module, its Registered Capacity.

These Physical Notifications provide, amongst other things, indicative Synchronising and De-Synchronising times to The Company in respect of any BM Unit comprising a Generating Unit (as defined in the Glossary and Definitions and not limited by BC1.2) and/or Power Generating Module and/or CCGT Module and/or Power Park Module, and for any Generating Units, and provide an indication of significant Demand changes in respect of other BM Units.

In the case where a **BM Unit** is affected by a **Network Gas Supply Emergency** load shedding event, once Stage 2 or higher has been declared, then their **Physical Notifications** shall represent the **User's** best estimate of the contracted power position of the affected **BM Unit** at the time of the event, taking into account any mitigating actions to reduce the difference between the contracted power position and the volume to be shed.

(b) Not Used.

(c) Export and Import Limits

Each **BM Participant** may, in respect of each of its **BM Units** and its **Generating Units** submit to **The Company** for any part or for the whole of the next following **Operational Day** the data listed in **BC1** Appendix 1 under the heading of "**Export and Import Limits**" to amend the data already held by **The Company** in relation to **Export and Import Limits**, which would otherwise apply for those **Settlement Periods**.

Export and Import Limits respectively represent the maximum export to or import from the **National Electricity Transmission System** for a **BM Unit** and a **Generating Unit** and are the maximum levels that the **BM Participant** wishes to make available and must be prepared in accordance with **Good Industry Practice**.

(d) Bid-Offer Data

Each BM Participant may, in respect of each of its BM Units, but must not in respect of its Generating Units submit to The Company for any Settlement Period of the next following Operational Day the data listed in BC1 Appendix 1 under the heading of "Bid-Offer Data" to amend the data already held by The Company in relation to Bid-Offer Data, which would otherwise apply to those Settlement Periods. The submitted Bid-Offer Data will be utilised by The Company in the preparation and analysis of its operational plans for the next following Operational Day. Bid-Offer Data may not be submitted unless an automatic logging device has been installed at the Control Point for the BM Unit in accordance with CC.6.5.8(b) or ECC.6.5.8(b) (as applicable).

(e) Dynamic Parameters (Day Ahead)

Each **BM Participant** may, in respect of each of its **BM Units**, but must not in respect of its **Generating Units** submit to **The Company** for the next following **Operational Day** the data listed in **BC1** Appendix 1 under the heading of "**Dynamic Parameters**" to amend that data already held by **The Company**.

These **Dynamic Parameters** shall reasonably reflect the expected true operating characteristics of the **BM Unit** and shall be prepared in accordance with **Good Industry Practice**.

The **Dynamic Parameters** applicable to the next following **Operational Day** will be utilised by **The Company** in the preparation and analysis of its operational plans for the next following **Operational Day** and may be used to instruct certain **Ancillary Services**. For the avoidance of doubt, the **Dynamic Parameters** to be used in the current **Operational Day** will be those submitted in accordance with BC2.5.3.1.

(f) Other Relevant Data

By 11:00 hours each day, each **BM Participant**, in respect of each of its **BM Units** and **Generating Units** for which **Physical Notifications** are being submitted, shall, if it has not already done so, submit to **The Company** (save in respect of item (vi) and (vii) where the item shall be submitted only when reasonably required by **The Company**), in respect of the next following **Operational Day** the following:

- (i) in the case of a CCGT Module and/or a Synchronous Power Generating Module, a CCGT Module Matrix and/or a Synchronous Power Generating Module Matrix as described in BC1 Appendix 1;
- (ii) details of any special factors which in the reasonable opinion of the BM Participant may have a material effect or present an enhanced risk of a material effect on the likely output (or consumption) of such BM Unit(s). Such factors may include risks, or potential interruptions, to BM Unit fuel supplies, or developing plant problems, details of tripping tests, etc. This information will normally only be used to assist in determining the appropriate level of Operating Margin that is required under OC2.4.6:
- (iii) in the case of **Generators**, any temporary changes, and their possible duration, to the **Registered Data** of such **BM Unit**;
- (iv) in the case of **Suppliers**, details of **Customer Demand Management** taken into account in the preparation of its **BM Unit Data**;
- details of any other factors which The Company may take account of when issuing Bid-Offer Acceptances for a BM Unit (e.g., Synchronising or De-Synchronising Intervals);
- (vi) in the case of a Cascade Hydro Scheme, the Cascade Hydro Scheme Matrix as described in BC1 Appendix 1;
- (vii) in the case of a Power Park Module, a Power Park Module Availability Matrix as described in BC1 Appendix 1;
- (viii) in the case of an Additional BM Unit or a Secondary BM Unit an Aggregator Impact Matrix as described in BC1 Appendix 1.

BC1.4.3 Data Revisions

The BM Unit Data, and Generating Unit Data, derived at 1100 hours each day under BC1.4.2 above may need to be revised by the BM Participant for a number of reasons, including for example, changes to expected output or input arising from revised contractual positions, plant breakdowns, changes to expected Synchronising or De-Synchronising times, etc, occurring before Gate Closure. BM Participants should use reasonable endeavours to ensure that the data held by The Company in relation to its BM Units and Generating Units, is accurate at all times. Revisions to BM Unit Data, and Generating Unit Data for any period of time up to Gate Closure should be submitted to The Company as soon as reasonably practicable after a change becomes apparent to the BM Participant. The Company will use reasonable endeavours to utilise the most recent data received from Users, subject to the application of the provisions of BC1.4.5, for its preparation and analysis of operational plans.

BC1.4.4 Receipt Of BM Unit Data Prior To Gate Closure

BM Participants submitting **Bid-Offer Data**, in respect of any **BM Unit** for use in the **Balancing Mechanism** for any particular **Settlement Period** in accordance with the **BSC**, must ensure that **Physical Notifications** and **Bid-Offer Data** for such **BM Units** are received in their entirety and logged into **The Company's** computer systems by the time of **Gate Closure** for that **Settlement Period**. In all cases the data received will be subject to the application under the **Grid Code** of the provisions of BC1.4.5.

For the avoidance of doubt, no changes to the **Physical Notification** or **Bid-Offer Data** for any **Settlement Period** may be submitted to **The Company** after **Gate Closure** for that **Settlement Period**.

BC1 4 5 BM Unit Data Defaulting, Validity And Consistency Checking

In the event that no submission of any or all of the BM Unit Data and Generating Unit Data in accordance with BC1.4.2 in respect of an Operational Day, is received by The Company by 11:00 hours on the day before that Operational Day. The Company will apply the Data Validation, Consistency and Defaulting Rules, with the default rules applicable to Physical Notifications and Export and Import Limits data selected as follows:

- (a) for an Interconnector Users BM Unit, the defaulting rules will set some or all of the data for that Operational Day to zero, unless the relevant Interconnector arrangements, as agreed with The Company, state otherwise (in which case (b) applies); and
- (b) for all other BM Units or Generating Units, the defaulting rules will set some or all of the data for that Operational Day to the values prevailing in the current Operational Day.

A subsequent submission by a User of a data item which has been so defaulted under the Grid Code will operate as an amendment to that defaulted data and thereby replace it. Any such subsequent submission is itself subject to the application under the Grid Code of the Data Validation, Consistency and Defaulting Rules.

BM Unit Data and Generating Unit Data submitted in accordance with the provisions of BC1.4.2 to BC1.4.4 will be checked under the Grid Code for validity and consistency in accordance with the Data Validation, Consistency and Defaulting Rules. If any BM Unit Data and Generating Unit Data so submitted fails the data validity and consistency checking, this will result in the rejection of all data submitted for that BM Unit or Generating Unit included in the electronic data file containing that data item and that BM Unit's or Generating Unit's data items will be defaulted under the Grid Code in accordance with the Data Validation, Consistency and Defaulting Rules. Data for other BM Units and Generating Units included in the same electronic data file will not be affected by such rejection and will continue to be validated and checked for consistency prior to acceptance. In the event that rejection of any BM Unit Data and Generating Unit Data occurs, details will be made available to the relevant BM Participant via the electronic data communication facilities. In the event of a difference between the BM Unit Data for the Cascade Hydro Scheme and sum of the data submitted for the Generating Units forming part of such Cascade Hydro Scheme, the BM Unit Data shall take precedence.

BC1.4.6 Special Provisions Relating To Interconnector Users

- (a) The total of the relevant Physical Notifications submitted by Interconnector Users in respect of any period of time should not exceed the capability (in MW) of the respective External Interconnection for that period of time. In the event that it does, then The Company shall advise the Externally Interconnected System Operator accordingly. In the period between such advice and Gate Closure, one or more of the relevant Interconnector Users would be expected to submit revised Physical Notifications to The Company to eliminate any such over-provision.
- (b) In any case where, as a result of a reduction in the capability (in MW) of the External Interconnection in any period during an Operational Day which is agreed between The Company and an Externally Interconnected System Operator after 0900 hours on the day before the beginning of such Operational Day, the total of the Physical Notifications in the relevant period using that External Interconnection, as stated in the BM Unit Data exceeds the reduced capability (in MW) of the respective External Interconnection in that period then The Company shall notify the Externally Interconnected System Operator accordingly.

BC1.5 <u>INFORMATION PROVIDED BY THE COMPANY</u>

The Company shall provide data to the Balancing Mechanism Reporting Agent or BSCCo each day in accordance with the requirements of the BSC in order that the data may be made available to Users via the Balancing Mechanism Reporting Service (or by such other means) in each case as provided in the BSC. Where The Company provides such information associated with the secure operation of the System to the Balancing Mechanism Reporting Agent, the provision of that information is additionally provided for in the following sections of this BC1.5. The Company shall be taken to have fulfilled its obligations to provide data under BC1.5.1, BC1.5.2, and BC1.5.3 by so providing such data to the Balancing Mechanism Reporting Agent.

BC1.5.1 <u>Demand Estimates</u>

Normally by 0900 hours each day, **The Company** will make available to **Users** a forecast of **National Demand** and the **Demand** for a number of pre-determined constraint groups (which may be updated from time to time, as agreed between **The Company** and **BSCCo**) for each **Settlement Period** of the next following **Operational Day**. Normally by 1200 hours each day, **The Company** will make available to **Users** a forecast of **National Electricity Transmission System Demand** for each **Settlement Period** of the next **Operational Day**. Further details are provided in Appendix 2.

BC1.5.2 <u>Indicated Margin And Indicated Imbalance</u>

Normally by 1200 hours each day, **The Company** will make available to **Users** an **Indicated Margin** and an **Indicated Imbalance** for each **Settlement Period** of the next following **Operational Day**. **The Company** will use reasonable endeavours to utilise the most recent data received from **Users** in preparing for this release of data. Further details are provided in Appendix 2.

BC1.5.3 <u>Provision Of Updated Information</u>

The Company will provide updated information on **Demand** and other information at various times throughout each day, as detailed in Appendix 2. **The Company** will use reasonable endeavours to utilise the most recent data received from **Users** in preparing for this release of data.

BC1.5.4 Reserve And System Margin

Contingency Reserve

(a) The amount of Contingency Reserve required at the day ahead stage and in subsequent timescales will be decided by The Company on the basis of historical trends in the reduction in availability of Large Power Stations and increases in forecast Demand up to real time operation. Where Contingency Reserve is to be allocated to thermal Gensets, The Company will instruct through a combination of Ancillary Services instructions and Bid-Offer Acceptances, the time at which such Gensets are required to synchronise, such instructions to be consistent with Dynamic Parameters and other contractual arrangements.

Operating Reserve

(b) The amount of Operating Reserve required at any time will be determined by The Company having regard to the Demand levels, Large Power Station availability shortfalls and the greater of the largest secured loss of generation (ie, the loss of generation against which, as a requirement of the Licence Standards, the National Electricity Transmission System must be secured) or loss of import from or sudden export to External Interconnections. The Company will allocate Operating Reserve to the appropriate BM Units and Generating Units so as to fulfil its requirements according to the Ancillary Services available to it and as provided in the BC.

System Margin

- (c) In the period following 1200 hours each day and in relation to the following Operational Day, The Company will monitor the total of the Maximum Export Limit component of the Export and Import Limits received against forecast National Electricity Transmission System Demand and the Operating Margin and will take account of Dynamic Parameters to see whether the anticipated level of the System Margin for any period is insufficient.
- (d) Where the level of the System Margin for any period is, in The Company's reasonable opinion, anticipated to be insufficient, The Company will send (by such data transmission facilities as have been agreed) a National Electricity Transmission System Warning-Electricity Margin Notice in accordance with OC7.4.8 to each Generator, Supplier, Externally Interconnected System Operator, Network Operator and Non-Embedded Customer.
- (e) Where, in The Company's judgement the System Margin at any time during the current Operational Day is such that there is a high risk of Demand reduction being instructed, a National Electricity Transmission System Warning - High Risk of Demand Reduction will be issued, in accordance with OC7.4.8.
- (f) The monitoring will be conducted on a regular basis and a revised National Electricity Transmission System Warning Electricity Margin Notice or High Risk of Demand Reduction may be sent out from time to time, including within the post Gate Closure phase. This will reflect any changes in Physical Notifications and Export and Import Limits which have been notified to The Company, and will reflect any Demand Control which has also been so notified. This will also reflect generally any changes in the forecast Demand and the relevant Operating Margin.
- (g) To reflect changing conditions, a National Electricity Transmission System Warning Electricity Margin Notice may be superseded by a National Electricity Transmission System Warning High Risk of Demand Reduction and vice-versa.
- (h) If the continuing monitoring identifies that the System Margin is anticipated, in The Company's reasonable opinion, to be sufficient for the period for which previously a National Electricity Transmission System Warning had been issued, The Company will send (by such data transmission facilities as have been agreed) a Cancellation of National Electricity Transmission System Warning to each User who had received a National Electricity Transmission System Warning Electricity Margin Notice or High Risk of Demand Reduction for that period. The issue of a Cancellation of National Electricity Transmission System Warning is not an assurance by The Company that in the event, the System Margin will be adequate, but reflects The Company's reasonable opinion that the insufficiency is no longer anticipated.
- (i) If continued monitoring indicates the **System Margin** becoming reduced **The Company** may issue further **National Electricity Transmission System Warnings Electricity Margin Notice** or **High Risk of Demand Reduction**.

(j) The Company may issue a National Electricity Transmission System Warning - Electricity Margin Notice or High Risk of Demand Reduction for any period, not necessarily relating to the following Operational Day, where it has reason to believe there will be a reduced System Margin over a period (for example in periods of protracted Plant shortage, the provisions of OC7.4.8.6 apply).

BC1.5.5 System And Localised NRAPM (Negative Reserve Active Power Margin)

(a) (i) System Negative Reserve Active Power Margin

Synchronised Gensets must at all times be capable of reducing output such that the total reduction in output of all **Synchronised Gensets** is sufficient to offset the loss of the largest secured demand on the **System** and must be capable of sustaining this response;

(ii) Localised Negative Reserve Active Power Margin

Synchronised Gensets must at all times be capable of reducing output to allow transfers to and from the **System Constraint Group** (as the case may be) to be contained within such reasonable limit as **The Company** may determine and must be capable of sustaining this response.

- (b) The Company will monitor the total of Physical Notifications of exporting BM Units and Generating Units (where appropriate) received against forecast Demand and, where relevant, the appropriate limit on transfers to and from a System Constraint Group and will take account of Dynamic Parameters and Export and Import Limits received to see whether the level of System NRAPM or Localised NRAPM for any period is likely to be insufficient. In addition, The Company may increase the required margin of System NRAPM or Localised NRAPM to allow for variations in forecast Demand. In the case of System NRAPM, this may be by an amount (in The Company's reasonable discretion) not exceeding five per cent of forecast Demand for the period in question. In the case of Localised NRAPM, this may be by an amount (in The Company's reasonable discretion) not exceeding ten per cent of the forecast Demand for the period in question;
- (c) Where the level of System NRAPM or Localised NRAPM for any period is, in The Company's reasonable opinion, likely to be insufficient, then this will be treated as a National Electricity Transmission System Warning as defined in OC7.4.8. The Company may contact all Generators in the case of low System NRAPM and may contact Generators in relation to relevant Gensets in the case of low Localised NRAPM. The Company will raise with each Generator the problems it is anticipating due to low System NRAPM or Localised NRAPM and will discuss whether, in advance of Gate Closure:-
 - (i) any change is possible in the **Physical Notification** of a **BM Unit** which has been notified to **The Company**; or
 - (ii) any change is possible to the **Physical Notification** of a **BM Unit** within an **Existing AGR Plant** within the **Existing AGR Plant Flexibility Limit**;
 - in relation to periods of low **System NRAPM** or (as the case may be) low **Localised NRAPM**. The **Company** will also notify each **Externally Interconnected System Operator** of the anticipated low **System NRAPM** or **Localised NRAPM** and request assistance in obtaining changes to **Physical Notifications** from **BM Units** in that **External System**.
- (d) Following Gate Closure, the procedure of BC2.9.4 will apply. In this case The Company will also endeavor, where time allows, to issue a National Electricity Transmission System Warning High Risk of Embedded Generation Reduction and/or a National Electricity Transmission System Warning Embedded Generation Control Imminent as applicable.

BC1.6 SPECIAL PROVISIONS RELATING TO NETWORK OPERATORS

BC1.6.1 <u>User System Data From Network Operators</u>

- (a) By 1000 hours each day each **Network Operator** will submit to **The Company** in writing, confirmation or notification of the following in respect of the next **Operational Day**:
 - (i) constraints on its User System which The Company may need to take into account in operating the National Electricity Transmission System. In this BC1.6.1 the term "constraints" shall include restrictions on the operation of Embedded Power Generating Modules, and/or Embedded CCGT Units, and/or Embedded Power Park Modules as a result of the User System to which the Power Generating Module and/or CCGT Unit and/or Power Park Module is connected at the User System Entry Point being operated or switched in a particular way, for example, splitting the relevant busbar. It is a matter for the Network Operator and the Generator to arrange the operation or switching, and to deal with any resulting consequences. The Generator, after consultation with the Network Operator, is responsible for ensuring that no BM Unit Data submitted to The Company can result in the violation of any such constraint on the User System.
 - (ii) the requirements of voltage control and MVAr reserves which **The Company** may need to take into account for **System** security reasons.
 - (iii) where applicable, updated best estimates of Maximum Export Capacity and Maximum Import Capacity and Interface Point Target Voltage/Power Factor for any Interface Point connected to its User System including any requirement for post-fault actions to be implemented on the relevant Offshore Transmission System by The Company.
 - (iv) constraints on its User System which The Company may need to take into account when issuing Bid-Offer Acceptances to Additional BM units or Secondary BM units.
- (b) The form of the submission will be:
 - that of a **BM Unit** output or consumption (for MW and for MVAr, in each case a fixed value or an operating range, on the **User System** at the **User System Entry Point**, namely in the case of a **BM Unit** comprising a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC1.2) on the higher voltage side of the generator step-up transformer, and/or in the case of a **Power Generating Module**, at the point of connection and/or in the case of a **Power Park Module**, at the point of connection) required for particular **BM Units** (identified in the submission) connected to that **User System** for each **Settlement Period** of the next **Operational Day**;
 - (ii) adjusted in each case for MW by the conversion factors applicable for those **BM**Units to provide output or consumption at the relevant **Grid Supply Points**.
- (c) At any time and from time to time, between 1000 hours each day and the expiry of the next Operational Day, each Network Operator must submit to The Company in writing any revisions to the information submitted under this BC1.6.1.

BC1.6.2 <u>Notification Of Times To Network Operators</u>

The Company will make available indicative Synchronising and De-Synchronising times to each Network Operator, but only relating to BM Units comprising a Generating Unit (as defined in the Glossary and Definitions and not limited by BC1.2) or a Power Park Module or a CCGT Module and/or a Power Generating Module, Embedded within that Network Operator's User System and those Gensets directly connected to the National Electricity Transmission System which The Company has identified under OC2 as being those which may, in the reasonable opinion of The Company, affect the integrity of that User System. If in preparing for the operation of the Balancing Mechanism, The Company becomes aware that a BM Unit directly connected to the National Electricity Transmission System may, in its reasonable opinion, affect the integrity of that other User System which, in the case of a BM Unit comprising a Generating Unit (as defined in the Glossary and Definitions and not limited by BC1.2) and/or a Power Generating Module and/or a CCGT Module and/or a Power Park Module, it had not so identified under OC2, then The Company may make available details of its indicative Synchronising and De-Synchronising times to that other User and shall inform the relevant BM Participant that it has done so, identifying the BM Unit concerned.

BC1.7 SPECIAL ACTIONS

- BC1.7.1 The Company may need to identify special actions (either pre- or post-fault) that need to be taken by specific Users in order to maintain the integrity of the National Electricity Transmission System in accordance with the Licence Standards and The Company Operational Strategy.
 - (a) For a **Generator** special actions will generally involve a **Load** change or a change of required Notice to Deviate from Zero NDZ, in a specific timescale on individual or groups of **Gensets**.
 - (b) For **Network Operators** these special actions will generally involve **Load** transfers between **Grid Supply Points** or arrangements for **Demand** reduction by manual or automatic means.
 - (c) For Externally Interconnected System Operators (in their co-ordinating role for Interconnector Users using their External System) these special actions will generally involve an increase or decrease of net power flows across an External Interconnection by either manual or automatic means.
- BC1.7.2 These special actions will be discussed and agreed with the relevant **User** as appropriate. The actual implementation of these special actions may be part of an "emergency circumstances" procedure described under **BC2**. If not agreed, generation or **Demand** may be restricted or may be at risk.
- BC1.7.3 **The Company** will normally issue the list of special actions to the relevant **Users** by 1700 hours on the day prior to the day to which they are to apply.

BC1.8 PROVISION OF REACTIVE POWER CAPABILITY

BC1.8.1 Under certain operating conditions **The Company** may identify through its **Operational Planning** that an area of the **National Electricity Transmission System** may have insufficient **Reactive Power** capability available to ensure that the operating voltage can be maintained in accordance with **The Company's Licence Standards**.

In respect of Onshore Synchronous Generating Unit(s) belonging to GB Code Users

- (i) that have a Connection Entry Capacity in excess of Rated MW (or the Connection Entry Capacity of the CCGT Module exceeds the sum of Rated MW of the Generating Units comprising the CCGT Module); and
- (ii) that are not capable of continuous operation at any point between the limits 0.85 **Power Factor** lagging and 0.95 **Power Factor** leading at the **Onshore Synchronous Generating Unit** terminals at **Active Power** output levels higher than **Rated MW**; and

- (iii) that have either a Completion Date on or after 1st May 2009, or where its Connection Entry Capacity has been increased above Rated MW (or the Connection Entry Capacity of the CCGT Module has increased above the sum of Rated MW of the Generating Units comprising the CCGT Module) such increase takes effect on or after 1st May 2009 but only in respect of GB Generators that are classified as GB Code Users ; and
- (iv) that are in an area of potentially insufficient **Reactive Power** capability as described in this clause BC1.8.1,

The Company may instruct the Onshore Synchronous Generating Unit(s) to limit its submitted Physical Notifications to no higher than Rated MW (or the Active Power output at which it can operate continuously between the limits 0.85 Power Factor lagging to 0.95 Power Factor leading at its terminals if this is higher) for a period specified by The Company. Such an instruction must be made at least 1 hour prior to Gate Closure, although The Company will endeavour to give as much notice as possible. The instruction may require that a Physical Notification is re-submitted. The period covered by the instruction will not exceed the expected period for which the potential deficiency has been identified. Compliance with the instruction will not incur costs to The Company in the Balancing Mechanism. The detailed provisions relating to such instructions will normally be set out in the relevant Bilateral Agreement.

BC1.8.2 BC1.8.1 shall not apply to **EU Code Users** where the obligations under CC.6.3.2(a) apply only to **GB Generators**. For the avoidance of doubt, **EU Code User's** are only required to satisfy the requirements of the **ECC's** and not the **CC's**.

APPENDIX 1 - BM UNIT DATA

BC1.A.1 More detail about valid values required under the **Grid Code** for **BM Unit Data** and **Generating Unit Data** may be identified by referring to the **Data Validation**, **Consistency and Defaulting Rules**. In the case of **Embedded BM Units** and **Generating Units** the **BM Unit Data** and the **Generating Unit Data** shall represent the value at the relevant **Grid Supply Point**. Where data is submitted on a **Generating Unit** basis, the provisions of this Appendix 1 shall in respect of such data submission apply as if references to **BM Unit** were replaced with **Generating Unit**. Where **The Company** and the relevant **User** agree, submission on a **Generating Unit** basis (in whole or in part) may be otherwise than in accordance with the provisions of the Appendix 1.

BC1.A.1.1 Physical Notifications

For each **BM Unit**, the **Physical Notification** is a series of MW figures and associated times, making up a profile of intended input or output of **Active Power** at the **Grid Entry Point** or **Grid Supply Point**, as appropriate, except where a **BM Unit** is affected by a Stage 2 or higher **Network Gas Supply Emergency** load shedding event. For each **Settlement Period**, the first "from time" should be at the start of the **Settlement Period** and the last "to time" should be at the end of the **Settlement Period**.

The input or output reflected in the **Physical Notification** for a single **BM Unit** (or the aggregate **Physical Notifications** for a collection of **BM Units** at a **Grid Entry Point** or **Grid Supply Point** or to be transferred across an **External Interconnection**, owned or controlled by a single **BM Participant**) must comply with the following limits regarding maximum rates of change, either for a single change or a series of related changes:

•	for a change of up to 300MW	no limit;
•	for a change greater than 300MW and less than 1000MW	50MW per minute;
•	for a change of 1000MW or more	40MW per minute,

unless prior arrangements have been discussed and agreed with **The Company**. This limitation is not intended to limit the Run-Up or Run-Down Rates provided as **Dynamic Parameters**.

In the case where a **BM Unit** is affected by a **Network Gas Supply Emergency** load shedding event, once Stage 2 or higher has been declared, then their **Physical Notifications** shall represent the **User's** best estimate of the contracted power position of the affected **BM Unit** at the time of the event, taking into account any mitigating actions to reduce the difference between the contracted power position and the volume to be shed.

An example of the format of **Physical Notification** is shown below. The convention to be applied is that where it is proposed that the **BM Unit** will be importing, the **Physical Notification** is negative.

			From		To
Data Name	BMU name	Time From	level	Time To	Level
			(MW)		MW)
PN , TAGENT ,	BMUNIT01	, 2001-11-03 06:30	, 77	, 2001-11-03 07:00	, 100
PN , TAGENT ,	BMUNIT01	, 2001-11-03 07:00	, 100	, 2001-11-03 07:12	, 150
PN , TAGENT ,	BMUNIT01	, 2001-11-03 07:12	, 150	, 2001-11-03 07:30	, 175

A linear interpolation will be assumed between the **Physical Notification** From and To

levels specified for the BM Unit by the BM Participant.

BC1.A.1.2 Not Used.

BC1.A.1.3 Export And Import Limits

BC1.A.1.3.1 Maximum Export Limit (MEL)

A series of MW figures and associated times, making up a profile of the maximum level at which the **BM Unit** may be exporting (in MW) to the **National Electricity Transmission System** at the **Grid Entry Point** or **Grid Supply Point** or **GSP Group**, as appropriate.

For a **Power Park Module**, the Maximum Export Limit should reflect the maximum possible **Active Power** output from each **Power Park Module** consistent with the data submitted within the **Power Park Module Availability Matrix** as defined under BC.1.A.1.8. For the avoidance of doubt, in the case of a **Power Park Module** this would equate to the **Registered Capacity** less the unavailable **Power Park Units** within the **Power Park Module** and not include weather corrected MW output from each **Power Park Unit**.

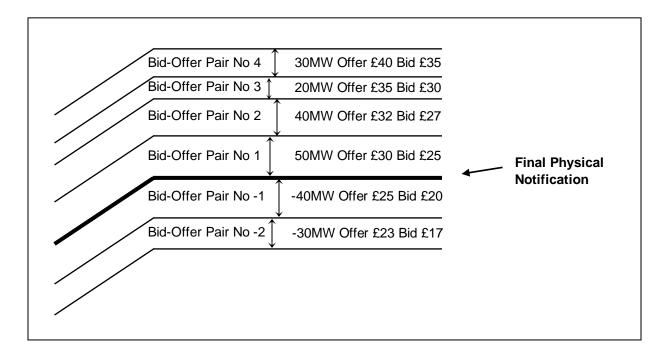
BC1.A.1.3.2 <u>Maximum Import Limit (MIL)</u>

A series of MW figures and associated times, making up a profile of the maximum level at which the **BM Unit** may be importing (in MW) from the **National Electricity Transmission System** at the **Grid Entry Point** or **Grid Supply Point** or **GSP Group**, as appropriate.

An example format of data is shown below. MEL must be positive or zero, and MIL must be negative or zero.

			From		To
Data Name	BMU name	Time From	level	Time To	level
			(MW)		(MW)
MEL , TAGENT	, BMUNIT01 ,	2001-11-03 05:00	, 410	, 2001-11-03 09:35	, 410
MEL , TAGENT	, BMUNIT01 ,	2001-11-03 09:35	, 450	, 2001-11-03 12:45	, 450
MIL , TAGENT	, BMUNIT04 ,	2001-11-03 06:30	, -200	, 2001-11-03 07:00	, -220

BC1.A.1.4 Bid-Offer Data


For each **BM Unit** for each **Settlement Period**:

Up to 10 Bid-Offer Pairs as defined in the BSC.

An example of the format of data is shown below.

					Pair	From	То	Offer	Bid
Data	Name	BMU name	Time from	Time to	ID	Level	Level	(£/	(£/
						(MW)	(MW)	MWh)	MWh)
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, 4	, 30	, 30 ,	40	, 35
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, 3	, 20	, 20 ,	35	, 30
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, 2	, 40	, 40 ,	32	, 27
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, 1	, 50	, 50 ,	30	, 25
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, -1	, -40	, -40 ,	25	, 20
BOD,	TAGENT	, BMUNIT01	, 2000-10-28 12:00	, 2000-10-28 13:30	, -2	, -30	, -30 ,	23	, 17

This example of Bid-Offer data is illustrated graphically below:

BC1.A.1.5 <u>Dynamic Parameters</u>

The **Dynamic Parameters** comprise:

- Up to three Run-Up Rate(s) and up to three Run-Down Rate(s), expressed in MW/minute and associated Run-Up Elbow(s) and Run-Down Elbow(s), expressed in MW for output and the same for input. It should be noted that Run-Up Rate(s) are applicable to a MW figure becoming more positive;
- Notice to Deviate from Zero (NDZ) output or input, being the notification time required for a BM Unit to start importing or exporting energy, from a zero Physical Notification level as a result of a Bid-Offer Acceptance, expressed in minutes;
- Notice to Deliver Offers (NTO) and Notice to Deliver Bids (NTB), expressed in minutes, indicating the notification time required for a BM Unit to start delivering Offers and Bids respectively from the time that the Bid-Offer Acceptance is issued. In the case of a BM Unit comprising a Genset, NTO and NTB will be set to a maximum period of two minutes;
- Minimum Zero Time (MZT), being either the minimum time that a BM Unit which has been exporting must operate at zero or be importing, before returning to exporting or the minimum time that a BM Unit which has been importing must operate at zero or be exporting before returning to importing, as a result of a Bid-Offer Acceptance, expressed in minutes;
- Minimum Non-Zero Time (MNZT), expressed in minutes, being the minimum time that a
 BM Unit can operate at a non-zero level as a result of a Bid-Offer Acceptance;
- Stable Export Limit (SEL) expressed in MW at the Grid Entry Point or Grid Supply Point
 or GSP Group, as appropriate, being the minimum value at which the BM Unit can, under
 stable conditions, export to the National Electricity Transmission System;
- Stable Import Limit (SIL) expressed in MW at the Grid Entry Point or Grid Supply Point
 or GSP Group, as appropriate, being the minimum value at which the BM Unit can, under
 stable conditions, import from the National Electricity Transmission System;
- Maximum Delivery Volume (MDV), expressed in MWh, being the maximum number of MWh of Offer (or Bid if MDV is negative) that a particular BM Unit may deliver within the associated Maximum Delivery Period (MDP), expressed in minutes, being the maximum period over which the MDV applies.
- Last Time to Cancel Synchronisation, expressed in minutes with an upper limit of 60 minutes, being the notification time required to cancel a BM Unit's transition from operation at zero. This parameter is only applicable where the transition arises either from a Physical Notification or, in the case where the Physical Notification is zero, a Bid-Offer Acceptance. There can be up to three Last Time to Cancel Synchronisation(s) each applicable for a range of values of Notice to Deviate from Zero.

BC1.A.1.6 CCGT Module Matrix

- BC1.A.1.6.1 **CCGT Module Matrix** showing the combination of **CCGT Units** running in relation to any given MW output, in the form of the diagram illustrated below. The **CCGT Module Matrix** is designed to achieve certainty in knowing the number of **CCGT Units** synchronised to meet the **Physical Notification** and to achieve a **Bid-Offer Acceptance**.
- BC1.A.1.6.2 In the case of a **Range CCGT Module**, and if the **Generator** so wishes, a request for the single **Grid Entry Point** at which power is provided from the **Range CCGT Module** to be changed in accordance with the provisions of BC1.A.1.6.4 below:

CCGT Module Matrix example form

CCGT MODULE	CCGT GENERATING UNITS* AVAILABLE								
ACTIVE POWER	1st GT	2 nd GT	3 rd GT	4th GT	5th GT	6th GT	1st ST	2nd ST	3rd ST
MW	ACTIVE POWER OUTPUT								
	150	150	150				100		
0MW to 150MW	/								
151MW to 250MW	/						/		
251MW to 300MW	/	/							
301MW to 400MW	/	/					/		
401MW to 450MW	/	/	/						
451MW to 550MW	/	/	/				/		

^{*} as defined in the Glossary and Definitions and not limited by BC1.2

- BC1.A.1.6.3 In the absence of the correct submission of a **CCGT Module Matrix** the last submitted (or deemed submitted) **CCGT Module Matrix** shall be taken to be the **CCGT Module Matrix** submitted hereunder.
- BC1.A.1.6.4 The data may also include in the case of a Range CCGT Module, a request for the Grid Entry Point at which the power is provided from the Range CCGT Module to be changed with effect from the beginning of the following Operational Day to another specified single Grid Entry Point (there can be only one) to that being used for the current Operational Day. The Company will respond to this request by 1600 hours on the day of receipt of the request. If The Company agrees to the request (such agreement not to be unreasonably withheld), the Generator will operate the Range CCGT Module in accordance with the request. If The Company does not agree, the Generator will, if it produces power from that Range CCGT Module, continue to provide power from the Range CCGT Module to the Grid Entry Point being used at the time of the request. The request can only be made up to 1100 hours in respect of the following Operational Day. No subsequent request to change can be made after 1100 hours in respect of the following Operational Day. Nothing in this paragraph shall prevent the busbar at the Grid Entry Point being operated in separate sections.
- BC1.A.1.6.5 The principles set out in PC.A.3.2.3 apply to the submission of a **CCGT Module Matrix** and accordingly the **CCGT Module Matrix** can only be amended as follows:
 - (a) Normal CCGT Module

if the CCGT Module is a Normal CCGT Module, the CCGT Units within that CCGT Module can only be amended such that the CCGT Module comprises different CCGT Units if The Company gives its prior consent in writing. Notice of the wish to amend the CCGT Units within such a CCGT Module must be given at least 6 months before it is wished for the amendment to take effect;

(b) Range CCGT Module

if the CCGT Module is a Range CCGT Module, the CCGT Units within that CCGT Module can only be amended such that the CCGT Module comprises different CCGT Units for a particular Operational Day if the relevant notification is given by 1100 hours on the day prior to the Operational Day in which the amendment is to take effect. No subsequent amendment may be made to the CCGT Units comprising the CCGT Module in respect of that particular Operational Day.

- BC1.A.1.6.6 In the case of a **CCGT Module Matrix** submitted (or deemed to be submitted) as part of the other data for **CCGT Modules**, the output of the **CCGT Module** at any given instructed MW output must reflect the details given in the **CCGT Module Matrix**. It is accepted that in cases of change in MW in response to instructions issued by **The Company** there may be a transitional variance to the conditions reflected in the **CCGT Module Matrix**. In achieving an instruction the range of number of **CCGT Units** envisaged in moving from one MW output level to the other must not be departed from. Each **Generator** shall notify **The Company** as soon as practicable after the event of any such variance. It should be noted that there is a provision above for the **Generator** to revise the **CCGT Module Matrix**, subject always to the other provisions of this **BC1**;
- BC1.A.1.6.7 Subject as provided above, **The Company** will rely on the **CCGT Units** specified in such **CCGT Module Matrix** running as indicated in the **CCGT Module Matrix** when it issues an instruction in respect of the **CCGT Module**;
- BC1.A.1.6.8 Subject as provided in BC1.A.1.6.5 above, any changes to the **CCGT Module Matrix** must be notified immediately to **The Company** in accordance with the relevant provisions of **BC1**.
- BC1.A.1.7 <u>Cascade Hydro Scheme Matrix</u>
- BC1.A.1.7.1 A Cascade Hydro Scheme Matrix showing the performance of individual Generating Units forming part of a Cascade Hydro Scheme in response to Bid-Offer Acceptance. An example table is shown below:

Cascade Hydro Scheme Matrix example form

Plant	Synchronises when offer is greater
	than
Generating Unit 1	MW
Generating Unit 2	MW
Generating Unit 3	MW
Generating Unit 4	MW
Generating Unit 5	MW

BC1.A.1.8 Power Park Module Availability Matrix

Power Park Module Availability Matrix showing the number of each type of Power Park Units expected to be available is illustrated in the example form below. The Power Park Module Availability Matrix is designed to achieve certainty in knowing the number of Power Park Units Synchronised to meet the Physical Notification and to achieve a Bid-Offer Acceptance by specifying which BM Unit each Power Park Module forms part of. The Power Park Module Availability Matrix may have as many columns as are required to provide information on the different make and model for each type of Power Park Unit in a Power Park Module and as many rows as are required to provide information on the Power Park Modules within each BM Unit. The description is required to assist identification of the Power Park Units within the Power Park Module and correlation with data provided under the Planning Code.

Power Park Module Availability Matrix example form

BM Unit Name								
Power Park Module [unique identifier]								
POWER PARK		POWER PA	ARK UNITS					
UNIT AVAILABILITY	Type A	Type B	Type C	Type D				
Description								
(Make/Model)								
Number of units								
Power Park Module [uniq	ue identifier]							
POWER PARK		POWER PA	ARK UNITS					
UNIT AVAILABILITY	Type A	Type B	Type C	Type D				
Description								
(Make/Model)								
Number of units								

- BC1.A.1.8.2 In the absence of the correct submission of a **Power Park Module Availability Matrix** the last submitted (or deemed submitted) **Power Park Module Availability Matrix** shall be taken to be the **Power Park Module Availability Matrix** submitted hereunder.
- BC1.A.1.8.3 The Company will rely on the Power Park Units, Power Park Modules and BM Units specified in such Power Park Module Availability Matrix running as indicated in the Power Park Module Availability Matrix when it issues an instruction in respect of the BM Unit.
- BC1.A.1.8.4 Subject as provided in PC.A.3.2.4 any changes to **Power Park Module** or **BM Unit** configuration, or availability of **Power Park Units** which affects the information set out in the **Power Park Module Availability Matrix** must be notified immediately to **The Company** in accordance with the relevant provisions of **BC1**. Initial notification may be by telephone. In some circumstances, such as a significant re-configuration of a **Power Park Module** due to an unplanned outage, a revised **Power Park Module Availability Matrix** must be supplied on **The Company's** request.
- BC1.A.1.9 Synchronous Power Generating Module Matrix
- BC1.A.1.9.1 Synchronous Power Generating Module Matrix showing the combination of Synchronous Power Generating Units running in relation to any given MW output, in the form of the table illustrated below. The Synchronous Power Generating Module Matrix is designed to achieve certainty in knowing the number of Synchronous Power Generating Units synchronised to meet the Physical Notification and to achieve a Bid-Offer Acceptance.
- BC1.A.1.9.2 This data need not be provided where a submission has been made in respect of BC1.A.1.6, BC1.A.1.7 or BC1.A.1.8.

Synchronous Power Generating Module Matrix example form

SYNCHRONOUS POWER GENERATING	SYNCHRONOUS POWER GENERATING UNITS* AVAILABLE								
MODULE MATRIX	1st GT	2 nd GT	3 rd GT	4th GT	5th GT	6th GT	1st ST	2nd ST	3rd ST
MW	ACTIVE POWER OUTPUT								
	150	150	150				100		
0MW to 150MW	/								
151MW to 250MW	/						/		
251MW to 300MW	/	/							
301MW to 400MW	/	/					/		
401MW to 450MW	/	/	/						
451MW to 550MW	/	/	/				/		

^{*} as defined in the Glossary and Definitions and not limited by BC1.2

- BC1.A.1.9.3 In the absence of the correct submission of a **Synchronous Power Generating Module**Matrix the last submitted (or deemed submitted) **Synchronous Power Generating Module**Matrix shall be taken to be the **Synchronous Power Generating Module Matrix** submitted hereunder.
- BC1.A.1.9.4 The principles set out in PC.A.3.2.5 apply to the submission of a Synchronous Power Generating Module Matrix and accordingly the Synchronous Power Generating Module Matrix can only be amended as if the Synchronous Power Generating Units within that Synchronous Power Generating Module can only be amended such that the Synchronous Power Generating Module comprises different Synchronous Power Generating Units if The Company gives its prior consent in writing. Notice of the wish to amend the Synchronous Power Generating Units within such a Synchronous Power Generating Module must be given at least 6 months before it is wished for the amendment to take effect.
- BC1.A.1.9.5 In the case of a **Synchronous Power Generating Module Matrix** submitted (or deemed to be submitted) as part of the other data for **Synchronous Power Generating Modules**, the output of the **Synchronous Power Generating Module** at any given instructed MW output must reflect the details given in the **Synchronous Power Generating Module Matrix**. It is accepted that in cases of change in MW in response to instructions issued by **The Company** there may be a transitional variance to the conditions reflected in the **Synchronous Power Generating Module Matrix**. In achieving an instruction the range of number of **Synchronous Power Generating Units** envisaged in moving from one MW output level to the other must not be departed from. Each **Generator** shall notify **The Company** as soon as practicable after the event of any such variance. It should be noted that there is a provision above for the **Generator** to revise the **Synchronous Power Generating Module Matrix**, subject always to the other provisions of this **BC1**.
- BC1.A.1.9.6 Subject as provided above, The Company will rely on the Synchronous Power Generating Units specified in such Synchronous Power Generating Module Matrix running as indicated in the Synchronous Power Generating Module Matrix when it issues an instruction in respect of the Synchronous Power Generating Module.

- BC1.A.1.9.7 Subject as provided in BC1.A.1.9.4 above, any changes to the **Synchronous Power Generating Module Matrix** must be notified immediately to **The Company** in accordance with the relevant provisions of **BC1**.
- BC1.A.1.10 Aggregator Impact Matrix
- BC1.A.1.10.1 For each **Additional BM Unit** and **Secondary BM Unit** the relevant **BM Participant** will submit data relating to the effect of a Bid-Off Acceptance on each **Grid Supply Point** within the **GSP Group** over which the **Additional BM Unit** or **Secondary BM Unit** was defined.
- BC1.A.1.10.2 For each **Additional BM Unit** and **Secondary BM Unit** the relevant **BM Participant** will also provide the post-codes and MSIDs that make up the **Additional BM Unit** or **Secondary BM Unit**.

Aggregator Impact Matrix example form

BMU Name				
Operational Day from which values apply				
Grid Supply Point	% Impact	Grid Supply Point	% Impact	

APPENDIX 2 - DATA TO BE MADE AVAILABLE BY THE COMPANY

BC1.A.2.1 Initial Day Ahead Demand Forecast

Normally by 09:00 hours each day, values (in MW) for each **Settlement Period** of the next following **Operational Day** of the following data items:-

- (i) Initial forecast of National Demand;
- (II) Initial forecast of **Demand** for a number of predetermined constraint groups.

BC1.A.2.2 <u>Initial Day Ahead Market Information</u>

Normally by 12:00 hours each day, values (in MW) for each **Settlement Period** of the next following **Operational Day** of the following data items:-

(i) Initial National Indicated Margin

This is the difference between the sum of **BM Unit** MELs and the forecast of **National Electricity Transmission System Demand**.

(ii) Initial National Indicated Imbalance

This is the difference between the sum of **Physical Notifications** for **BM Units** comprising **Generating Units** (as defined in the Glossary and Definitions and not limited by BC1.2) and/or **Power Generating Modules** and/or **CCGT Modules** and/or **Power Park Modules** and the forecast of **National Electricity Transmission System Demand**.

(iii) Forecast of National Electricity Transmission System Demand.

BC1.A.2.3 <u>Current Day And Day Ahead Updated Market Information</u>

Data will normally be made available by the times shown below for the associated periods of time:

Target Data Release Time	Period Start Time	Period End Time
02:00	02:00 D0	05:00 D+1
10:00	10:00 D0	05:00 D+1
16:00	05:00 D+1	05:00 D+2
16:30	16:30 D0	05:00 D+1
22:00	22:00 D0	05:00 D+2

In this table, D0 refers to the current day, D+1 refers to the next day and D+2 refers to the day following D+1.

In all cases, data will be $\frac{1}{2}$ hourly average MW values calculated by **The Company**. Information to be released includes:

National Information

- (i) National Indicated Margin;
- (ii) National Indicated Imbalance;
- (iii) Updated forecast of National Electricity Transmission System Demand.

Constraint Boundary Information (For Each Constraint Boundary)

(i) Indicated Constraint Boundary Margin;

This is the difference between the Constraint Boundary Transfer limit and the difference between the sum of **BM Unit** MELs and the forecast of local **Demand** within the constraint boundary.

(ii) Local Indicated Imbalance;

This is the difference between the sum of **Physical Notifications** for **BM Units** comprising **Generating Units** (as defined in the Glossary and Definitions and not limited by BC1.2) and/or **Power Generating Modules** and/or **CCGT Modules** and/or **Power Park Modules** and the forecast of local **Demand** within the constraint boundary.

(iii) Updated forecast of the local **Demand** within the constraint boundary.

APPENDIX 3 - EXTERNAL INTERCONNECTION DATA

BC1.A.3 Reference Programme

For each Interconnector, the Interconnector Reference Programme is a series of MW figures and associated times, making up a profile of intended input or output of Active Power at the Grid Entry Point or User System Entry Point, as appropriate.

The **Interconnector Reference Programme** is derived by the **Interconnector Owner** as the addition of all the **Interconnector User's Physical Notifications**.

Unless otherwise agreed with **The Company**, the input or output reflected in each **Interconnector Reference Programme** for the **Interconnector** must comply with the following limits regarding maximum rate of change, either for a single change or a series of related changes:

Maximum operational rate of change 100MW/minute. This maximum rate of change can only be
exceeded if prior arrangements have been agreed with The Company, for example, services
contractually agreed between the Interconnector Owner and The Company relating to an
Externally Interconnected System Operator or when required to return one of the connected
External Systems to normal state.

An example format of MW figures supplied within the **Interconnector Reference Programme** is shown below, where *Export* is an input of **Active Power** to the GB **System** and *Import* is an output of **Active Power** from the GB **System**.

Start Date & Time (dd/mm/yyyy hh:mm:ss)	Start of Ramp Direction (Export/ Import)	Start of Ramp Flow (MW)	Ramp Rate (MW/min)	End Date & Time (dd/mm/yyyy hh:mm:ss)	End of Ramp Direction (Export/ Import)	End of Ramp Flow (MW)
23/08/2021	Export	100 0	0 24/08/2021 12:30:01	Export	100	
23:00:00				12:30:01	LAPOIT	100
24/08/2021	Export	100	50	24/08/2021	Export	0
12:30:01				12:32:01		
24/08/2021	Import	0	50	24/08/2021	Import	100
12:32:01				12:34:01		
24/08/2021	Import	100 0	0	24/08/2021	Import	100
12:34:01			U	22:59:59		

< END OF BALANCING CODE NO. 1 >

BALANCING CODE NO. 2 (BC2)

POST GATE CLOSURE PROCESS

CONTENTS

(This contents page does not form part of the Grid Code)

<u>Par</u>	agraph No	<u>/Title</u>	Page Number
BC	2.1 INTR	ODUCTION	3
BC	2.2 OBJE	CTIVE	3
BC	2.3 SCOF	PE	3
BC	2.4 INFOF	RMATION USED	3
BC	2.5 PHYS	SICAL OPERATION OF BM UNITS	4
	BC2.5.1	Accuracy Of Physical Notifications	4
	BC2.5.2	Synchronising And De-Synchronising Times	5
	BC2.5.3	Revisions To BM Unit Data	6
	BC2.5.4	Operation In The Absence Of Instructions From The Company	7
	BC2.5.5	Commencement Or Termination Of Participation In The Balancing Mechanism	9
BC	2.6 COM	MUNICATIONS	10
	BC2.6.1	Normal Communications With Control Points	10
	BC2.6.2	Communication With Control Points In Emergency Circumstances	10
	BC2.6.3	Communication With Network Operators In Emergency Circumstances	11
		Communication With Externally Interconnected System Operators In Erances	• •
		Communications during Planned Outages Of Electronic Data Communication	
BC		DFFER ACCEPTANCES	
	BC2.7.1	Acceptance of Bids and Offers by The Company	12
	BC2.7.2	Consistency With Export And Import Limits And Dynamic Parameters	12
	BC2.7.3	Confirmation and Rejection of Acceptances	12
	BC2.7.4	Action Required From BM Participants	13
	BC2.7.5	Additional Action required when responding to Bid-Offer Acceptances	13
BC	2.8 ANCI	LLARY SERVICES	13
	BC2.8.1	Call-Off of Ancillary Services by The Company	13
	BC2.8.2	Consistency with Export and Import Limits and Dynamic Parameters	14
	BC2.8.3	Rejection Of Ancillary Service Instructions	14
	BC2.8.4	Action Required From BM Units	14
	BC2.8.5	Reactive Despatch Network Restrictions	15
BC	2.9 EMEF	RGENCY CIRCUMSTANCES	15

	BC2.9.1	Emergency Actions	15
	BC2.9.2	Implementation of Emergency Instructions	16
	BC2.9.3	Examples of Emergency Instructions	17
		Maintaining Adequate System And Localised NRAPM (Negative Reserve Active Pov	
	BC2.9.5	Maintaining an adequate level of Frequency Sensitive Generation	19
	BC2.9.6	Emergency Assistance to And from External Systems	19
	BC2.9.7	Unplanned Outages of Electronic Communication and Computing Facilities	20
BC2.	.10 OTH	IER OPERATIONAL INSTRUCTIONS AND NOTIFICATIONS	21
BC2.	.11 LIAIS	SON WITH GENERATORS FOR RISK OF TRIP AND AVR TESTING	22
BC2.	.12 LIAIS	SON WITH EXTERNALLY INTERCONNECTED SYSTEM OPERATORS	23
BC2.	.13 LIAIS	SON WITH INTERCONNECTOR OWNERS	23
APPI	ENDIX 1	- FORM OF BID-OFFER ACCEPTANCES	24
APPI	ENDIX 2	- TYPE AND FORM OF ANCILLARY SERVICE INSTRUCTIONS	26
APPI	ENDIX 3	- SUBMISSION OF REVISED MVAr CAPABILITY	32
	APPEND	IX 3 ANNEXURE 1	33
	APPEND	IX 3 ANNEXURE 2	34
	APPEND	IX 3 ANNEXURE 3	35
APPI	ENDIX 4	- SUBMISSION OF AVAILABILITY OF FREQUENCY SENSITIVE MODE	37
	APPEND	IX 4 ANNEXURE 1	38

BC2.1 <u>INTRODUCTION</u>

Balancing Code No 2 (BC2) sets out the procedure for:

- (a) the physical operation of **BM Units** and **Generating Units** (which could be part of a **Power Generating Module**) in the absence of any instructions from **The Company**;
- (b) the submission of **Interconnector** data by each **Interconnector Owner**;
- (c) the acceptance by **The Company** of **Balancing Mechanism** Bids and Offers,
- (d) the calling off by The Company of Ancillary Services;
- (e) the issuing and implementation of Emergency Instructions; and
- (f) the issuing by **The Company** of other operational instructions and notifications.

In addition, **BC2** deals with any information exchange between **The Company** and **BM Participants** or specific **Users** that takes place after **Gate Closure**.

In this BC2, "consistent" shall be construed as meaning to the nearest integer MW level.

In this BC2, references to "a BM Unit returning to its Physical Notification" shall take account of any Bid-Offer Acceptances already issued to the BM Unit in accordance with BC2.7 and any Emergency Instructions already issued to the BM Unit or Generating Unit (which could be part of a Power Generating Module) in accordance with BC2.9.

BC2.2 OBJECTIVE

The procedure covering the operation of the **Balancing Mechanism** and the issuing of instructions to **Users** is intended to enable **The Company** as far as possible to maintain the integrity of the **National Electricity Transmission System** together with the security and quality of supply.

Where reference is made in this **BC2** to **Power Generating Modules** or **Generating Units** (unless otherwise stated) it only applies:

- (a) to each Generating Unit which forms part of the BM Unit of a Cascade Hydro Scheme;
- (b) at an **Embedded Exemptable Large Power Station** where the relevant **Bilateral Agreement** specifies that compliance with **BC2** is required:
 - to each Generating Unit which could be part of a Synchronous Power Generating Module, or
 - (ii) to each Power Park Module where the Power Station comprises Power Park Modules.

BC2.3 SCOPE

BC2 applies to The Company and to Users, which in this BC2 means:-

- (a) BM Participants;
- (b) Externally Interconnected System Operators, and
- (c) Network Operators.

BC2.4 INFORMATION USED

BC2.4.1 The information which **The Company** shall use, together with the other information available to it, in assessing:

- (a) which bids and offers to accept;
- (b) which BM Units and/or Generating Units to instruct to provide Ancillary Services;
- (c) the need for and formulation of Emergency Instructions; and
- (d) other operational instructions and notifications which The Company may need to issue will be:
 - (a) the **Physical Notification** and **Bid-Offer Data** submitted under **BC1**;
 - (b) **Export and Import Limits** in respect of that **BM Unit** and/or **Generating Unit** supplied under **BC1** (and any revisions under **BC1** and **BC2** to the data); and
 - (c) Interconnector data submitted by each Interconnector Owner under BC1; and
 - (d) **Dynamic Parameters** submitted or revised under this **BC2**.
- As provided for in BC1.5.4, **The Company** will monitor the total of the Maximum Export Limit component of the **Export and Import Limits** against forecast **Demand** and the **Operating Margin** and will take account of **Dynamic Parameters** to see whether the anticipated level of **System Margin** is insufficient. This will reflect any changes in **Export and Import Limits** which have been notified to **The Company**, and will reflect any **Demand Control** which has also been so notified. **The Company** may issue new or revised **National Electricity Transmission System Warnings Electricity Margin Notice** or **High Risk of Demand Reduction** in accordance with BC1.5.4.

BC2.5 PHYSICAL OPERATION OF BM UNITS

BC2.5.1 <u>Accuracy Of Physical Notifications</u>

As described in BC1.4.2(a), **Physical Notifications** must represent the **BM Participant's** best estimate of expected input or output of **Active Power**, except where a **BM Unit** is affected by a Stage 2 or higher **Network Gas Supply Emergency** load shedding event. **Physical Notifications** shall be prepared in accordance with **Good Industry Practice**.

In the case where a **BM Unit** is affected by a **Network Gas Supply Emergency** load shedding event, once Stage 2 or higher has been declared, then their **Physical Notifications** shall represent the **User**'s best estimate of the contracted power position of the affected **BM Unit** at the time of the event, taking into account any mitigating actions to reduce the difference between the contracted power position and the volume to be shed.

Each **BM Participant** must, applying **Good Industry Practice**, ensure that each of its **BM Units** follows the **Physical Notification** in respect of that **BM Unit**, except where the generation output of a **BM Unit** for an affected site only is reduced as a result of a Stage 2 or higher **Network Gas Supply Emergency** load shedding event, (and each of its **Generating Units** follows the **Physical Notification** in the case of **Physical Notifications** supplied under BC1.4.2(a)(2)) that is prevailing at **Gate Closure** (the data in which will be utilised in producing the **Final Physical Notification Data** in accordance with the **BSC**) subject to variations arising from:

- (a) the issue of Bid-Offer Acceptances which have been confirmed by the BM Participant;
 or
- (b) instructions by **The Company** in relation to that **BM Unit** (or a **Generating Unit**) which require, or compliance with which would result in, a variation in output or input of that **BM Unit** (or a **Generating Unit**); or
- (c) compliance with provisions of BC1, BC2 or BC3 which provide to the contrary.

Except where variations from the **Physical Notification** arise from matters referred to at (a), (b) or (c) above, in respect only of **BM Units** (or **Generating Units**) powered by an **Intermittent Power Source**, where there is a change in the level of the **Intermittent Power Source** from that forecast and used to derive the **Physical Notification**, variations from the **Physical Notification** prevailing at **Gate Closure** may, subject to remaining within the **Registered Capacity**, occur providing that the **Physical Notification** prevailing at **Gate Closure** was prepared in accordance with **Good Industry Practice**.

If variations and/or instructions as described in (a),(b) or (c) apply in any instance to **BM Units** (or **Generating Units**) powered by an **Intermittent Power Source** (e.g. a **Bid Offer Acceptance** is issued in respect of such a **BM Unit** and confirmed by the **BM Participant**) then such provisions will take priority over the third paragraph of BC2.5.1 above such that the **BM Participant** must ensure that the **Physical Notification** as varied in accordance with (a), (b) or (c) above applies and must be followed, subject to this not being prevented as a result of an unavoidance event as described below.

For the avoidance of doubt, this gives rise to an obligation on each **BM Participant** (applying **Good Industry Practice**) to ensure that each of its **BM Units** (and **Generating Units**), follows the **Physical Notifications** prevailing at **Gate Closure** as amended by such variations and/or instructions unless in relation to any such obligation it is prevented from so doing as a result of an unavoidable event (existing or anticipated) in relation to that **BM Unit** (or a **Generating Unit**).

Examples (on a non-exhaustive basis) of such an unavoidable event are:

- plant breakdowns;
- events requiring a variation of input or output on safety grounds (relating to personnel or plant);
- events requiring a variation of input or output to maintain compliance with the relevant Statutory Water Management obligations; and
- uncontrollable variations in output of Active Power.

Any anticipated variations in input or output post **Gate Closure** from the **Physical Notification** for a **BM Unit** (or a **Generating Unit**) prevailing at **Gate Closure** (except for those arising from instructions as outlined in (a), (b) or (c) above) must be notified to **The Company** without delay by the relevant **BM Participant** (or the relevant person on its behalf). For the avoidance of doubt, where a change in the level of the **Intermittent Power Source** from that forecast and used to derive the **Physical Notification** results in the **Shutdown** or **Shutdown** of part of the **BM Unit** (or **Generating Unit**), the change must be notified to **The Company** without delay by the relevant **BM Participant** (or the relevant person on its behalf).

Implementation of this notification should normally be achieved by the submission of revisions to the **Export and Import Limits** in accordance with BC2.5.3 below.

- BC2.5.2 <u>Synchronising And De-Synchronising Times</u>
- BC2.5.2.1 The **Final Physical Notification Data** provides indicative **Synchronising** and **De-Synchronising** times to **The Company** in respect of any **BM Unit** which is **De-Synchronising** or is anticipated to be **Synchronising** post **Gate Closure**.

Any delay of greater than five minutes to the **Synchronising** or any advancement of greater than five minutes to the **De-Synchronising** of a **BM Unit** must be notified to **The Company** without delay by the submission of a revision of the **Export and Import Limits**.

- BC2.5.2.2 Except in the circumstances provided for in BC2.5.2.3, BC2.5.2.4, BC2.5.5.1 or BC2.9, no **BM**Unit (nor a Generating Unit) is to be Synchronised or De-Synchronised unless:-
 - (a) a **Physical Notification** had been submitted to **The Company** prior to **Gate Closure** indicating that a **Synchronisation** or **De-Synchronisation** is to occur; or

- (b) The Company has issued a Bid-Offer Acceptance requiring Synchronisation or De-Synchronisation of that BM Unit (or a Generating Unit).
- BC2.5.2.3 BM Participants must only Synchronise or De-Synchronise BM Units (or a Generating Unit);
 - (a) at the times indicated to The Company, or
 - (b) at times consistent with variations in output or input arising from provisions described in BC2.5.1.

(within a tolerance of +/- 5 minutes) or unless that occurs automatically as a result of **Operational Intertripping** or **Low Frequency Relay** operations or an **Ancillary Service** pursuant to an **Ancillary Services Agreement**

BC2.5.2.4 **De-Synchronisation** may also take place without prior notification to **The Company** as a result of plant breakdowns or if it is done purely on safety grounds (relating to personnel or plant). If that happens, **The Company** must be informed immediately that it has taken place and a revision to **Export and Import Limits** must be submitted in accordance with BC2.5.3.3. Following any **De-Synchronisation** occurring as a result of plant failure, no **Synchronisation** of that **BM Unit** (or a **Generating Unit**) is to take place without **The Company's** agreement, such agreement not to be unreasonably withheld.

In the case of **Synchronisation**, following an unplanned **De-Synchronisation** within the preceding 15 minutes, a minimum of 5 minutes notice of its intention to **Synchronise** should normally be given to **The Company** (via a revision to **Export and Import Limits**). In the case of any other unplanned **De-Synchronisation** where the **User** plans to **Synchronise** before the expiry of the current **Balancing Mechanism** period, a minimum of 15 minutes notice of **Synchronisation** should normally be given to **The Company** (via a revision to **Export and Import Limits**). In addition, the rate at which the **BM Unit** is returned to its **Physical Notification** is not to exceed the limits specified in **BC1**, Appendix 1 without **The Company's** agreement.

The Company will either agree to the Synchronisation or issue a Bid-Offer Acceptance in accordance with BC2.7 to delay the Synchronisation. The Company may agree to an earlier Synchronisation if System conditions allow.

BC2.5.2.5 Notification Of Times To Network Operators

The Company will make changes to the Synchronising and De-Synchronising times available to each Network Operator, but only relating to BM Units Embedded within its User System and those BM Units directly connected to the National Electricity Transmission System which The Company has identified under OC2 and/or BC1 as being those which may, in the reasonable opinion of The Company, affect the integrity of that User System and shall inform the relevant BM Participant that it has done so, identifying the BM Unit concerned.

Each **Network Operator** must notify **The Company** of any changes to its **User System** data as soon as practicable in accordance with BC1.6.1(c).

BC2.5.3 Revisions To BM Unit Data

Following **Gate Closure** for any **Settlement Period**, no changes to the **Physical Notification** or to **Bid-Offer Data** for that **Settlement Period** may be submitted to **The Company**.

At any time, any **BM Participant** (or the relevant person on its behalf) may, in respect of any of its **BM Units**, submit to **The Company** the data listed in **BC1**, Appendix 1 under the heading of **Dynamic Parameters** from the **Control Point** of its **BM Unit** to amend the data already held by **The Company** (including that previously submitted under this BC2.5.3.1) for use in preparing for and operating the **Balancing Mechanism**. The change will take effect from the time that it is received by **The Company**. For the avoidance of doubt, the **Dynamic Parameters** submitted to **The Company** under BC1.4.2(e) are not used within the current **Operational Day**. The **Dynamic Parameters** submitted under this BC2.5.3.1 shall reasonably reflect the true current operating characteristics of the **BM Unit** and shall be prepared in accordance with **Good Industry Practice**.

Following the Operational Intertripping of a System to Generating Unit or a System to CCGT Module and/or a System to Power Generating Module, the BM Participant shall as soon as reasonably practicable re-declare its MEL to reflect more accurately its output capability.

- BC2.5.3.2 Revisions to Export and Import Limits or Other Relevant Data supplied (or revised) under BC1 must be notified to The Company without delay as soon as any change becomes apparent to the BM Participant (or the relevant person on its behalf) via the Control Point for the BM Unit (or a Generating Unit) to ensure that an accurate assessment of BM Unit (or a Generating Unit) capability is available to The Company at all times. These revisions should be prepared in accordance with Good Industry Practice and may be submitted by use of electronic data communication facilities or by telephone.
- Revisions to Export and Import Limits must be made by a BM Participant (or the relevant person on its behalf) via the Control Point in the event of any De-Synchronisation of a BM Unit (or a Generating Unit) in the circumstances described in BC2.5.2.4 if the BM Unit (or a Generating Unit) is no longer available for any period of time. Revisions must also be submitted in the event of plant failures causing a reduction in input or output of a BM Unit (or a Generating Unit) even if that does not lead to De-Synchronisation. Following the correction of a plant failure, the BM Participant (or the relevant person on its behalf) must notify The Company via the Control Point of a revision to the Export and Import Limits, if appropriate, of the BM Unit (or a Generating Unit), using reasonable endeavours to give a minimum of 5 minutes notice of its intention to return to its Physical Notification. The rate at which the BM Unit (or a Generating Unit) is returned to its Physical Notification is not to exceed the limits specified in BC1, Appendix 1 without The Company's agreement.
- BC2.5.4 Operation in the Absence of Instructions from The Company

In the absence of any **Bid-Offer Acceptances**, **Ancillary Service** instructions issued pursuant to BC2.8 or **Emergency Instructions** issued pursuant to BC2.9:

- (a) as provided for in BC3, each **Synchronised Genset** producing **Active Power** must operate at all times in **Limited Frequency Sensitive Mode** (unless instructed in accordance with BC3.5.4 to operate in **Frequency Sensitive Mode**);
- (b) (i) in the absence of any MVAr Ancillary Service instructions, the MVAr output of each Synchronised Genset located Onshore should be 0 MVAr upon Synchronisation at the circuit-breaker where the Genset is Synchronised. For the avoidance of doubt, in the case of a Genset located Onshore comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC Systems or DC Converters, the steady state tolerance allowed in CC.6.3.2(b) or ECC.6.3.2.4.4 may be applied;
 - (ii) In the absence of any MVAr Ancillary Service instructions, the MVAr output of each Synchronised Genset comprising Synchronous Generating Units located Offshore (which could be part of a Synchronous Power Generating Module) should be 0MVAr at the Grid Entry Point upon Synchronisation. For the avoidance of doubt, in the case of a Genset located Offshore comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC Systems or DC Converters, the steady state tolerance allowed in CC.6.3.2(e) or ECC.6.3.2.5.1 or

- ECC.6.3.2.5.2 or ECC.6.3.2.5.3 or ECC.6.3.2.6.1 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 (as applicable) may be applied;
- (c) (i) subject to the provisions of 2.5.4(c) (ii) and 2.5.4 (c) (iii) below, the excitation system or the voltage control system of a Genset located Offshore which has agreed an alternative Reactive Power capability range under CC.6.3.2 (e) (iii) or ECC.6.3.2.5.2 or ECC.6.3.2.5.3 or ECC.6.3.2.6.1 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 (as applicable) or a Genset located Onshore, unless otherwise agreed with The Company, must be operated only in its constant terminal voltage mode of operation with VAR limiters in service, with any constant Reactive Power output control mode or constant Power Factor output control mode always disabled, unless agreed otherwise with The Company. In the event of any change in System voltage, a Generator must not take any action to override automatic MVAr response which is produced as a result of constant terminal voltage mode of operation of the automatic excitation control system unless instructed otherwise by The Company or unless immediate action is necessary to comply with Stability Limits or unless constrained by plant operational limits or safety grounds (relating to personnel or plant);
 - (ii) In the case of all Gensets comprising Non-Synchronous Generating Units, DC Converters, HVDC Systems and Power Park Modules that are located Offshore and which have agreed an alternative Reactive Power capability range under CC.6.3.2 (e) (iii), or ECC.6.3.2.5.2 or ECC.6.3.2.5.3 or ECC.6.3.2.6.1 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 (as applicable) or that are located **Onshore** only when operating below 20 % of the Rated MW output, the voltage control system shall maintain the Reactive Power transfer at the Grid Entry Point (or User System Entry Point if Embedded) to 0 MVAr. For the avoidance of doubt, the relevant steady state tolerance allowed for GB Generators in CC.6.3.2(b) or CC.6.3.2 (e) and for EU Generators in ECC.6.3.2.4.4, ECC.6.3.2.5.1, ECC.6.3.2.5.2, or ECC.6.3.2.5.3 or ECC.6.3.2.6.1, ECC.6.3.2.6.2 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 may be applied. In the case of any such Gensets owned or operated by GB Code Users comprising current source DC Converter technology or comprising Power Park Modules connected to the Total System by a current source DC Converter when operating at any power output, the voltage control system shall maintain the Reactive Power transfer at the Grid Entry Point (or User System Entry Point if Embedded) to 0 MVAr. For the avoidance of doubt, the relevant steady state tolerance allowed in CC.6.3.2(b) or CC.6.3.2 (c) (i) or CC.6.3.2(e) may be applied.
 - (iii) In the case of all **Gensets** located **Offshore** which are not subject to the requirements of BC2.5.4 (c) (i) or BC2.5.4 (c) (ii) the control system shall maintain the **Reactive Power** transfer at the **Offshore Grid Entry Point** at 0MVAr. For the avoidance of doubt the steady state tolerance allowed by CC.6.3.2 (e) or ECC.6.3.2.4.4, ECC.6.3.2.5.1, or ECC.6.3.2.5.2 or ECC.6.3.2.5.3, or ECC.6.3.2.6.1 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 may be applied.
- (d) In the absence of any MVAr Ancillary Service instructions,
 - (i) the MVAr output of each Genset located Onshore should be 0 MVAr immediately prior to De-Synchronisation at the circuit-breaker where the Genset is Synchronised, other than in the case of a rapid unplanned De-Synchronisation or in the case of a Genset comprising of Power Generating Modules and/or Non-Synchronous Generating Units and/or Power Park Modules and/or HVDC Converters or DC Converters which is operating at less than 20% of its Rated MW output where the requirements of BC2.5.4 (c) part (ii) apply, or;
 - (ii) the MVAr output of each Genset located Offshore should be 0MVAr immediately prior to De-Synchronisation at the Offshore Grid Entry Point, other than in the case of a rapid unplanned De-Synchronisation or in the case of a Genset comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC

Converters or DC Converters which is operating at less than 20% of its Rated MW output and which has agreed an alternative Reactive Power capability range (for GB Code Users) under CC.6.3.2 (e) (iii) or ECC.6.3.2.4.4, ECC.6.3.2.5.1, ECC.6.3.2.5.2, or ECC.6.3.2.5.3, or ECC.6.3.2.6.1 or ECC.6.3.2.6.3 or ECC.6.3.2.6.4 (for EU Code Users) where the requirements of BC2.5.4 (c) (ii) apply.

- (e) a **Generator** should at all times operate its **CCGT Units** in accordance with the applicable **CCGT Module Matrix**:
- (f) in the case of a Range CCGT Module, a Generator must operate that CCGT Module so that power is provided at the single Grid Entry Point (or User System Entry Point if Embedded) identified in the data given pursuant to PC.A.3.2.1 or at the single Grid Entry Point to which The Company has agreed pursuant to BC1.4.2(f);
- (g) in the event of the System Frequency being above 50.3Hz or below 49.7Hz, BM Participants must not commence any reasonably avoidable action to regulate the input or output of any BM Unit in a manner that could cause the System Frequency to deviate further from 50Hz without first using reasonable endeavours to discuss the proposed actions with The Company. The Company shall either agree to these changes in input or output or issue a Bid-Offer Acceptance in accordance with BC2.7 to delay the change.
- (h) a **Generator** should at all times operate its **Power Park Units** in accordance with the applicable **Power Park Module Availability Matrix**.
- BC2.5.5 Commencement or Termination of Participation in the Balancing Mechanism
- In the event that a **BM Participant** in respect of a **BM Unit** with a **Demand Capacity** with a magnitude of less than 50MW in **NGET's Transmission Area** or less than 10MW in **SHETL's Transmission Area** or less than 30MW in **SPT's Transmission Area** or comprising **Generating Units** (as defined in the Glossary and Definitions and not limited by BC2.2) and/or **Power Generating Modules** and/or **CCGT Modules** and/or **Power Park Modules** at a **Small Power Station**, notifies **The Company** at least 30 days in advance that from a specified **Operational Day** it will:
 - (a) no longer submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day, that BM Participant no longer has to meet the requirements of BC2.5.1 nor the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit. Also, with effect from that Operational Day, any defaulted Physical Notification and defaulted Bid-Offer Data in relation to that BM Unit arising from the Data Validation, Consistency and Defaulting Rules will be disregarded and the provisions of BC2.5.2 will not apply;
 - (b) submit **Bid-Offer Data** under BC1.4.2(d), then with effect from that **Operational Day** that **BM Participant** will need to meet the requirements of BC2.5.1 and the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that **BM Unit**.
- In the event that a BM Participant in respect of a BM Unit with a Demand Capacity with a magnitude of 50MW or more in NGET's Transmission Area or 10MW or more in SHETL's Transmission Area or 30MW or more in SPT's Transmission Area or comprising Generating Units (as defined in the Glossary and Definitions and not limited by BC2.2) and/or Power Generating Modules and/or CCGT Modules and/or Power Park Modules at a Medium Power Station or Large Power Station notifies The Company at least 30 days in advance that from a specified Operational Day it will:
 - (a) no longer submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day that BM Participant no longer has to meet the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit; also, with effect from that Operational Day, any defaulted Bid-Offer Data in relation to that BM Unit arising from the Data Validation, Consistency and Defaulting Rules will be disregarded;

(b) submit **Bid-Offer Data** under BC1.4.2(d), then with effect from that **Operational Day** that **BM Participant** will need to meet the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that **BM Unit**.

BC2.6 COMMUNICATIONS

Electronic communications are always conducted in GMT. However, the input of data and display of information to **Users** and **The Company** and all other communications are conducted in London time.

BC2.6.1 Normal Communication With Control Points

- (a) With the exception of BC2.6.1(c) below, Bid-Offer Acceptances and, unless otherwise agreed with The Company, Ancillary Service instructions shall be given by automatic logging device and will be given to the Control Point for the BM Unit. For all Planned Maintenance Outages the provisions of BC2.6.5 will apply. For Generating Units (including DC Connected Power Park Modules (if relevant)) communications under BC2 shall be by telephone unless otherwise agreed by The Company and the User.
- (b) Bid-Offer Acceptances and Ancillary Service instructions must be formally acknowledged immediately by the BM Participant (or the relevant person on its behalf) via the Control Point for the BM Unit or Generating Unit in respect of that BM Unit or that Generating Unit. The acknowledgement and subsequent confirmation or rejection, within two minutes of receipt, is normally given electronically by automatic logging device. If no confirmation or rejection is received by The Company within two minutes of the issue of the Bid-Offer Acceptance, then The Company will contact the Control Point for the BM Unit by telephone to determine the reason for the lack of confirmation or rejection. Any rejection must be given in accordance with BC2.7.3 or BC2.8.3.
- (c) In the event of a failure of the logging device or an outage of **The Company's** computer system, **Bid-Offer Acceptances** and instructions will be given, acknowledged, and confirmed or rejected by telephone. The provisions of BC2.9.7 are also applicable.
- (d) In the event that in carrying out the Bid-Offer Acceptances or providing the Ancillary Services, or when operating at the level of the Final Physical Notification Data as provided in BC2.5.1, an unforeseen problem arises, caused on safety grounds (relating to personnel or plant), The Company must be notified without delay by telephone.
- (e) The provisions of BC2.5.3 are also relevant.
- (f) Submissions of revised MVAr capability may be made via the **Designated Information Exchange System**, using the format given in Appendix 3 to **BC2**.
- (g) Communication will normally be by telephone for any purpose other than **Bid-Offer Acceptances**, in relation to **Ancillary Services** or for revisions of MVAr data.
- (h) Submissions of revised availability of Frequency Sensitive Mode may be made via the Designated Information Exchange System, using the format given in Appendix 4 to BC2. This process should only be used for technical restrictions to the availability of Frequency Sensitive Mode.

BC2.6.2 <u>Communication With Control Points In Emergency Circumstances</u>

The Company will issue Emergency Instructions direct to the Control Point for each BM Unit [or Generating Unit] in Great Britain. Emergency Instructions to a Control Point will normally be given by telephone (and will include an exchange of operator names).

BC2.6.3 <u>Communication With Network Operators In Emergency Circumstances</u>

The Company will issue Emergency Instructions direct to the Network Operator at each Control Centre in relation to actions including special actions as set out in BC1.7, actions in the categories set out under BC2.9.3.3, Embedded Generation Control and Demand Control actions. Emergency Instructions to a Network Operator will normally be given by telephone (and will include an exchange of operator names). OC6 contains further provisions relating to Demand Control instructions; OC6B contains further provisions relating to Embedded Generation Control instructions.

BC2.6.4 <u>Communication with Externally Interconnected System Operators in Emergency Circumstances</u>

The Company will issue Emergency Instructions directly to the Externally Interconnected System Operator at each Control Centre. Emergency Instructions to an Externally Interconnected System Operator will normally be given by telephone (and will include an exchange of operator names).

BC2.6.5 <u>Communications during Planned Outages of Electronic Data Communication Facilities</u>

Planned Maintenance Outages will normally be arranged to take place during periods of low data transfer activity. Upon any such **Planned Maintenance Outage** in relation to a post **Gate Closure** period:-

- (a) **BM Participants** should operate in relation to any period of time in accordance with the **Physical Notification** prevailing at **Gate Closure** current at the time of the start of the **Planned Maintenance Outage** in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.6.5. No further submissions of **BM Unit Data** (other than data specified in BC1.4.2(c) and BC1.4.2(e)) should be attempted or **Generating Unit Data**. Plant failure or similar problems causing significant deviation from **Physical Notification** should be notified to **The Company** by the submission of a revision to **Export and Import Limits** in relation to the **BM Unit** or **Generating Unit** so affected;
- (b) Interconnector Owners should operate in relation to any period of time in accordance with the Interconnector Reference Programme based on the latest Physical Notifications notified by the Interconnector Users at the start of the Planned Maintenance Outage in relation to each such period of time. The Interconnector Owners should communicate such latest Interconnector Reference Programme to The Company prior to the start of the Planned Maintenance Outage and continue to act in accordance with such latest Interconnector Reference Programme. No further submissions of Interconnector Reference Programme should be attempted until the end of the outage is declared.
- (c) during the outage, revisions to the data specified in BC1.4.2(c) and BC1.4.2(e) may be submitted. Communication between **Users Control Points** and **The Company** during the outage will be conducted by telephone;
- (d) The Company will issue Bid-Offer Acceptances by telephone; and
- (e) no data will be transferred from **The Company** to the **BMRA** until the communication facilities are re-established.
- (f) The provisions of BC2.9.7 may also be relevant.

BC2.7 BID-OFFER ACCEPTANCES

BC2.7.1 Acceptance of Bids and Offers by The Company

Bid-Offer Acceptances may be issued to the **Control Point** at any time following **Gate Closure**. Any **Bid-Offer Acceptance** will be consistent with the **Dynamic Parameters** and **Export and Import Limits** of the **BM Unit** in so far as the **Balancing Mechanism** timescales will allow (see BC2.7.2).

- (a) **The Company** is entitled to assume that each **BM Unit** is available in accordance with the **BM Unit Data** submitted unless and until it is informed of any changes.
- (b) Bid-Offer Acceptances sent to the Control Point will specify the data necessary to define a MW profile to be provided (ramp rate break-points are not normally explicitly sent to the Control Point) and to be achieved consistent with the respective BM Unit's Export and Import Limits provided or modified under BC1 or BC2, and Dynamic Parameters given under BC2.5.3 or, if agreed with the relevant User, such rate within those Dynamic Parameters as is specified by The Company in the Bid-Offer Acceptances.
- (c) All Bid-Offer Acceptances will be deemed to be at the current "Target Frequency", namely where a Genset is in Frequency Sensitive Mode they refer to target output at Target Frequency.
- (d) The form of and terms to be used by The Company in issuing Bid-Offer Acceptances together with their meanings are set out in Appendix 1 in the form of a non-exhaustive list of examples.

BC2.7.2 <u>Consistency With Export And Import Limits And Dynamic Parameters</u>

- (a) Bid-Offer Acceptances will be consistent with the Export and Import Limits provided or modified under BC1 or BC2 and the Dynamic Parameters provided or modified under BC2. Bid-Offer Acceptances may also recognise Other Relevant Data provided or modified under BC1 or BC2
- (b) In the case of consistency with Dynamic Parameters this will be limited to the time until the end of the Settlement Period for which Gate Closure has most recently occurred. If The Company intends to issue a Bid-Offer Acceptance covering a period after the end of the Settlement Period for which Gate Closure has most recently occurred, based upon the then submitted Dynamic Parameters, Export and Import Limits and Bid-Offer Data applicable to that period, The Company will indicate this to the BM Participant at the Control Point for the BM Unit. The intention will then be reflected in the issue of a Bid-Offer Acceptance to return the BM Unit to its previously notified Physical Notification after the relevant Gate Closure, provided the submitted data used to formulate this intention has not changed and subject to System conditions which may affect that intention. Subject to that, assumptions regarding Bid-Offer Acceptances may be made by BM Participants for Settlement Periods for which Gate Closure has not yet occurred when assessing consistency with Dynamic Parameters in Settlement Periods for which Gate Closure has occurred. If no such subsequent Bid-Offer Acceptance is issued, the original Bid-Offer Acceptance will include an instantaneous return to Physical Notification at the end of the Balancing Mechanism period.

BC2.7.3 <u>Confirmation and Rejection of Acceptances</u>

Bid-Offer Acceptances may only be rejected by a BM Participant :

- (a) on safety grounds (relating to personnel or plant) as soon as reasonably possible and in any event within five minutes; or
- (b) because they are not consistent with the **Export and Import Limits** or **Dynamic Parameters** applicable at the time of issue of the **Bid-Offer Acceptance**.

A reason must always be given for rejection by telephone.

Where a **Bid-Offer Acceptance** is not confirmed within two minutes or is rejected, **The Company** will seek to contact the **Control Point** for the **BM Unit**. **The Company** must then, within 15 minutes of issuing the **Bid-Offer Acceptance**, withdraw the **Bid-Offer Acceptance** or log the **Bid-Offer Acceptance** as confirmed. **The Company** will only log a rejected **Bid-Offer Acceptance** as confirmed following discussion and if the reason given is, in **The Company's** reasonable opinion, not acceptable, **The Company** will inform the **BM Participant** accordingly.

BC2.7.4 Action Required From BM Participants

- (a) Each BM Participant in respect of its BM Units will comply in accordance with BC2.7.1 with all Bid-Offer Acceptances given by The Company with no more than the delay allowed for by the Dynamic Parameters unless the BM Unit has given notice to The Company under the provisions of BC2.7.3 regarding non-acceptance of a Bid-Offer Acceptance.
- (b) Where a BM Unit's input or output changes in accordance with a Bid-Offer Acceptance issued under BC2.7.1, such variation does not need to be notified to The Company in accordance with BC2.5.1.
- (c) In the event that while carrying out the Bid-Offer Acceptance an unforeseen problem arises caused by safety reasons (relating to personnel or plant), The Company must be notified immediately by telephone and this may lead to revision of BM Unit Data in accordance with BC2.5.3

BC2.7.5 Additional Action required when responding to Bid-Offer Acceptances

- (a) When complying with **Bid-Offer Acceptances** for a **CCGT Module**, a **Generator** will operate its **CCGT Units** in accordance with the applicable **CCGT Module Matrix**.
- (b) When complying with **Bid-Offer Acceptances** for a **CCGT Module** which is a **Range CCGT Module**, a **Generator** must operate that **CCGT Module** so that power is provided at the single **Grid Entry Point** identified in the data given pursuant to PC.A.3.2.1 or at the single **Grid Entry Point** to which **The Company** has agreed pursuant to BC1.4.2 (f).
- (c) On receiving a new MW **Bid-Offer Acceptance**, no tap changing shall be carried out to change the MVAr output unless there is a new MVAr **Ancillary Service** instruction issued pursuant to BC2.8.
- (d) When complying with Bid-Offer Acceptances for a Power Park Module, a Generator will operate its Power Park Units in accordance with the applicable Power Park Module Availability Matrix.
- (e) When complying with **Bid-Offer Acceptances** for a **Synchronous Power Generating Module**, a **Generator** will operate its **Generating Units** in accordance with the applicable **Synchronous Power Generating Module Availability Matrix**.
- (f) When complying with Bid-Offer Acceptances for an Additional BM Unit or Secondary BM Unit they will operate in accordance with the applicable Aggregator Impact Matrix.

BC2.8 ANCILLARY SERVICES

This section primarily covers the call-off of **System Ancillary Services**. The provisions relating to **Commercial Ancillary Services** will normally be covered in the relevant **Ancillary Services Agreement**.

BC2.8.1 Call-Off of Ancillary Services by The Company

(a) **Ancillary Service** instructions may be issued at any time.

- (b) The Company is entitled to assume that each BM Unit (or Generating Unit) is available in accordance with the BM Unit Data (or the Generating Unit Data) and data contained in the Ancillary Services Agreement unless and until it is informed of any changes.
- (c) **Frequency** control instructions may be issued in conjunction with, or separate from, a **Bid-Offer Acceptance**.
- (d) The form of and terms to be used by The Company in issuing Ancillary Service instructions together with their meanings are set out in Appendix 2 in the form of a nonexhaustive list of examples including Reactive Power and associated instructions.
- (e) In the case of Generating Units that do not form part of a BM Unit any change in Active Power as a result of, or required to enable, the provision of an Ancillary Service will be dealt with as part of that Ancillary Service Agreement and/or provisions under the CUSC.
- (f) A **System to Generator Operational Intertripping Scheme** will be armed in accordance with BC2.10.2(a).

BC2.8.2 Consistency with Export and Import Limits and Dynamic Parameters

Ancillary Service instructions will be consistent with the Export and Import Limits provided or modified under BC1 or BC2 and the Dynamic Parameters provided or modified under BC2. Ancillary Service instructions may also recognise Other Relevant Data provided or modified under BC1 or BC2.

BC2.8.3 Rejection of Ancillary Service Instructions

- (a) Ancillary Service instructions may only be rejected, by automatic logging device or by telephone, on safety grounds (relating to personnel or Plant) or because they are not consistent with the applicable Export and Import Limits, Dynamic Parameters, Other Relevant Data or data contained in the Ancillary Services Agreement and a reason must be given immediately for non-acceptance.
- (b) The issue of Ancillary Service instructions for Reactive Power will be made with due regard to any resulting change in Active Power output. The instruction may be rejected if it conflicts with any Bid-Offer Acceptance issued in accordance with BC2.7 or with the Physical Notification.
- (c) Where Ancillary Service instructions relating to Active Power and Reactive Power are given together, and to achieve the Reactive Power output would cause the BM Unit to operate outside Dynamic Parameters as a result of the Active Power instruction being met at the same time, then the timescale of implementation of the Reactive Power instruction may be extended to be no longer than the timescale for implementing the Active Power instruction but in any case to achieve the MVAr Ancillary Service instruction as soon as possible.

BC2.8.4 Action Required From BM Units

- (a) Each BM Unit (or Generating Unit) will comply in accordance with BC2.8.1 with all Ancillary Service instructions relating to Reactive Power properly given by The Company within 2 minutes or such longer period as The Company may instruct, and all other Ancillary Service instructions without delay, unless the BM Unit or Generating Unit has given notice to The Company under the provisions of BC2.8.3 regarding nonacceptance of Ancillary Service instructions.
- (b) Each BM Unit may deviate from the profile of its Final Physical Notification Data, as modified by any Bid-Offer Acceptances issued in accordance with BC2.7.1, only as a result of responding to Frequency deviations when operating in Frequency Sensitive Mode in accordance with the Ancillary Services Agreement.

- (c) Each Generating Unit that does not form part of a BM Unit may deviate from the profile of its Final Physical Notification Data where agreed by The Company and the User, including but not limited to, as a result of providing an Ancillary Service in accordance with the Ancillary Service Agreement.
- (d) In the event that while carrying out the Ancillary Service instructions an unforeseen problem arises caused by safety reasons (relating to personnel or plant), The Company must be notified immediately by telephone and this may lead to revision of BM Unit Data or Generating Unit Data in accordance with BC2.5.3.

BC2.8.5 Reactive Despatch Network Restrictions

Where The Company has received notification pursuant to the Grid Code that a Reactive Despatch to Zero MVAr Network Restriction is in place with respect to any Embedded Power Generating Module and/or Embedded Generating Unit and/or Embedded Power Park Module or HVDC Converter at an Embedded HVDC Converter Station or DC Converter at an Embedded DC Converter Station, then The Company will not issue any Reactive Despatch Instruction with respect to that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter until such time as notification is given to The Company pursuant to the Grid Code that such Reactive Despatch to Zero MVAr Network Restriction is no longer affecting that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter.

BC2.9 <u>EMERGENCY CIRCUMSTANCES</u>

BC2.9.1 <u>Emergency Actions</u>

- BC2.9.1.1 In certain circumstances (as determined by **The Company** in its reasonable opinion) it will be necessary, in order to preserve the integrity of the **National Electricity Transmission System** and any synchronously connected **External System**, for **The Company** to issue **Emergency Instructions**. In such circumstances, it may be necessary to depart from normal **Balancing Mechanism** operation in accordance with BC2.7 in issuing **Bid-Offer Acceptances**. **BM Participants** must also comply with the requirements of **BC3**.
- BC2.9.1.2 Examples of circumstances that may require the issue of **Emergency Instructions** include:-
 - (a) **Events** on the **National Electricity Transmission System** or the **System** of another **User**; or
 - (b) the need to maintain adequate **System** and **Localised NRAPM** in accordance with BC2.9.4 below; or
 - (c) the need to maintain adequate **Frequency** sensitive **Gensets** in accordance with BC2.9.5 below: or
 - (d) the need to implement **Demand Control** in accordance with OC6; or
 - (e) (i) the need to invoke the **System Restoration** process or the **Re-Synchronisation** of **Power Island** process in accordance with OC9; or
 - (ii) the need to request provision of a Maximum Generation Service; or
 - (iii) the need to issue an Emergency Deenergisation Instruction in circumstances where the condition or manner of operation of any Transmission Plant and/or Apparatus is such that it may cause damage or injury to any person or to the National Electricity Transmission System; or
 - (f) the need to implement Embedded Generation Control in accordance with OC6B.

- BC2.9.1.3 In the case of **BM Units** and **Generating Units** in **Great Britain**, **Emergency Instructions** will be issued by **The Company** direct to the **User** at the **Control Point** for the **BM Unit** or **Generating Unit** and may require an action or response which is outside its **Other Relevant Data** or **Export and Import Limits** submitted under **BC1**, or revised under **BC2**, or **Dynamic Parameters** submitted or revised under **BC2**.
- BC2.9.1.4 In the case of a **Network Operator** or an **Externally Interconnected System Operator**, **Emergency Instructions** will be issued to its **Control Centre**.
- BC2.9.2 <u>Implementation of Emergency Instructions</u>
- BC2.9.2.1 **Users** will respond to **Emergency Instructions** issued by **The Company** without delay and using all reasonable endeavours to so respond. **Emergency Instructions** may only be rejected by an **User** on safety grounds (relating to personnel or plant) and this must be notified to **The Company** immediately by telephone.
- BC2.9.2.2 **Emergency Instructions** will always be prefixed with the words "This is an **Emergency Instruction**" except in the case of:
 - Maximum Generation Service instructed by electronic data communication facilities where the instruction will be issued in accordance with the provisions of the Maximum Generation Service Agreement; and
 - (ii) an Emergency Deenergisation Instruction, where the Emergency Deenergisation Instruction will be pre-fixed with the words 'This is an Emergency Deenergisation Instruction'; and
 - (iii) during **System Restoration** situation where the **Balancing Mechanism** has been suspended, any instruction given by **The Company** will (unless **The Company** specifies otherwise) be deemed to be an **Emergency Instruction** and need not be pre-fixed with the words 'This is an **Emergency Instruction**'; and
 - (iv) during System Restoration where the Balancing Mechanism has not been suspended, any instruction issued to Restoration Contractors or to Network Operators which are part of an invoked Local Joint Restoration Plan will (unless The Company specifies otherwise) be deemed to be an Emergency Instruction and need not be prefixed with the words 'This is an Emergency Instruction'. Equally during a System Restoration where the Balancing Mechanism has not been suspended, any instruction to Network Operators which are part of an activated Distribution Restoration Zone Plan will (unless The Company specifies otherwise) be deemed to be an Emergency Instruction and need not be prefixed by the words "This is an Emergency Instruction".

In Scotland, any instruction from the Relevant Transmission Licensee to Restoration Contractors which are part of an invoked Local Joint Restoration Plan and are instructed in accordance with the provisions of that Local Joint Restoration Plan, will be deemed to be an Emergency Instruction and need not be prefixed with the words 'This is an Emergency Instruction'. Equally any instruction from the Relevant Transmission Licensee to Network Operators who are party to an activated Distribution Restoration Zone Plan and are instructed in accordance with the provisions of that Distribution Restoration Zone Plan will be deemed to be an Emergency Instruction and need not be prefixed with the words "This is an Emergency Instruction".

BC2.9.2.3 In all cases under this BC2.9, except BC2.9.1.2 (e) where **The Company** issues an **Emergency Instruction** to a **BM Participant** which is not rejected under BC2.9.2.1, the **Emergency Instruction** shall be treated as a **Bid-Offer Acceptance**. For the avoidance of doubt, any **Emergency Instruction** issued to a **Network Operator** or to an **Externally Interconnected System Operator** or in respect of a **Generating Unit** that does not form part of a **BM Unit**, will not be treated as a **Bid-Offer Acceptance**.

- BC2.9.2.4 In the case of BC2.9.1.2 (e) (ii) where **The Company** issues an **Emergency Instruction** pursuant to a **Maximum Generation Service Agreement**, payment will be dealt with in accordance with the **CUSC** and the **Maximum Generation Service Agreement**.
- BC2.9.2.5 In the case of BC2.9.1.2 (e) (iii) where **The Company** issues an **Emergency Deenergisation Instruction**, payment will be dealt with in accordance with the **CUSC**, Section 5.
- BC2.9.2.6 In the case of BC2.9.1.2 (e) (i), upon receipt of an **Emergency Instruction** by a **Generator** during a **System Restoration**, the provisions of Section G of the **BSC** relating to compensation shall apply.
- BC2.9.3 <u>Examples of Emergency Instructions</u>
- BC2.9.3.1 In the case of a **BM Unit** or a **Generating Unit**, **Emergency Instructions** may include an instruction for the **BM Unit** or the **Generating Unit** to operate in a way that is not consistent with the **Dynamic Parameters** and/or **Export and Import Limits**.
- BC2.9.3.2 In the case of a **Generator**, **Emergency Instructions** may include:
 - (a) an instruction to trip one or more Gensets (excluding Operational Intertripping); or
 - (b) an instruction to trip **Mills** or to **Part Load** a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2); or
 - (c) an instruction to Part Load a Power Generating Module and/or CCGT Module or Power Park Module; or
 - (d) an instruction for the operation of CCGT Units within a CCGT Module (on the basis of the information contained within the CCGT Module Matrix) when emergency circumstances prevail (as determined by The Company in The Company's reasonable opinion); or
 - (e) an instruction to generate outside normal parameters, as allowed for in 4.2 of the **CUSC**; or
 - (f) an instruction for the operation of Generating Units within a Cascade Hydro Scheme (on the basis of the additional information supplied in relation to individual Generating Units) when emergency circumstances prevail (as determined by The Company in The Company's reasonable opinion); or
 - (g) an instruction for the operation of a Power Park Module (on the basis of the information contained within the Power Park Module Availability Matrix) when emergency circumstances prevail (as determined by The Company in The Company's reasonable opinion).
- BC2.9.3.3 Instructions to **Network Operators** relating to the **Operational Day** may include:
 - (a) a requirement for **Demand** reduction and disconnection or restoration pursuant to **OC6**;
 - (b) an instruction to effect a load transfer between **Grid Supply Points**;
 - (c) an instruction to switch in a **System to Demand Intertrip Scheme**;
 - (d) an instruction to split a network;
 - (e) an instruction to disconnect an item of Plant or Apparatus from the System;
 - (f) requirement for **Embedded Generation Control** or restoration pursuant to OC6B; or
 - (g) an instruction to activate a **Distribution Restoration Zone Plan** as provided for in OC9.4.7.8.1.

- BC2.9.4 <u>Maintaining Adequate System and Localised NRAPM (Negative Reserve Active Power Margin)</u>
- BC2.9.4.1 Where **The Company** is unable to satisfy the required **System NRAPM** or **Localised NRAPM** by following the process described in BC1.5.5, **The Company** will issue an **Emergency Instruction** to exporting **BM Units** for **De-Synchronising** on the basis of **Bid-Offer Data** submitted to **The Company** in accordance with BC1.4.2(d). If **The Company** is still unable to satisfy the required **System NRAPM** or **Localised NRAPM** then **The Company** may issue **Emergency Instructions** to **Network Operator(s)** as set out under OC6B to carry out **Embedded Generation Control**.
- BC2.9.4.2 In the event that **The Company** is unable to differentiate between exporting **BM Units** according to **Bid-Offer Data**, **The Company** will instruct a **BM Participant** to **Shutdown** a specified exporting **BM Unit** for such period based upon the following factors:
 - (a) effect on power flows (resulting in the minimisation of transmission losses);
 - (b) reserve capability;
 - (c) Reactive Power worth;
 - (d) Dynamic Parameters;
 - (e) in the case of **Localised NRAPM**, effectiveness of output reduction in the management of the **System Constraint**.
- BC2.9.4.3 Where **The Company** is still unable to differentiate between exporting **BM Units**, having considered all the foregoing, **The Company** will decide which exporting **BM Unit** to **Shutdown** by the application of a quota for each **BM Participant** in the ratio of each **BM Participant**'s **Physical Notifications**.
- BC2.9.4.4 Other than as provided in BC2.9.4.5 and BC2.9.4.6 below, in determining which exporting **BM Units** to **De-Synchronise** under this BC2.9.4, **The Company** shall not consider in such determination (and accordingly shall not instruct to **De-Synchronise**) any **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) within an **Existing Gas Cooled Reactor Plant**.
- BC2.9.4.5 The Company shall be permitted to instruct a Generating Unit (as defined in the Glossary and Definitions and not limited by BC2.2) within an Existing AGR Plant to De-Synchronise if the relevant Generating Unit within the Existing AGR Plant has failed to offer to be flexible for the relevant instance at the request of The Company within the Existing AGR Plant Flexibility Limit.
- Notwithstanding the provisions of BC2.9.4.5 above, if the level of System NRAPM (taken together with System constraints) or Localised NRAPM is such that it is not possible to avoid instructing a Generating Unit (as defined in the Glossary and Definitions and not limited by BC2.2) within an Existing Magnox Reactor Plant and/or an Existing AGR Plant whether or not it has met requests within the Existing AGR Flexibility Limit to De-Synchronise, The Company may, provided the power flow across each External Interconnection is either at zero or results in an export of power from the Total System, so instruct a Generating Unit (as defined in the Glossary and Definitions and not limited by BC2.2) within an Existing Magnox Reactor Plant and/or an Existing AGR Plant to De-Synchronise in the case of System NRAPM, in all cases and in the case of Localised NRAPM, when the power flow would have a relevant effect.
- BC2.9.4.7 When instructing exporting **BM Units** which form part of an **On-Site Generator Site** to reduce generation or export under this BC2.9.4, **The Company** will not issue an instruction which would reduce generation or export below the reasonably anticipated **Demand** of the **On-Site Generator Site**. For the avoidance of doubt, it should be noted that the term "**On-Site Generator Site**" only relates to Trading Units which have fulfilled the Class 1 or Class 2 requirements.

- BC2.9.5 Maintaining an adequate level of Frequency Sensitive Generation
- BC2.9.5.1 If, post **Gate Closure**, **The Company** determines, in its reasonable opinion, from the information then available to it (including information relating to a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) breakdown) that the number of, and level of **Primary**, **Secondary** and **High Frequency Response** available from **Gensets** (other than those units within **Existing Gas Cooled Reactor Plant**, which are permitted to operate in **Limited Frequency Sensitive Mode** at all times under BC3.5.3) available to operate in **Frequency Sensitive Mode**, is such that it is not possible to avoid **De-Synchronising Existing Gas Cooled Reactor Plant** then provided that:
 - (a) there are (or, as the case may be, that The Company anticipates, in its reasonable opinion, that at the time that the instruction is to take effect there will be) no other Gensets generating and exporting on to the Total System which are not operating in Frequency Sensitive Mode (or which are operating with only a nominal amount in terms of level and duration) (unless, in The Company's reasonable opinion, necessary to assist the relief of System constraints or necessary as a result of other System conditions); and
 - (b) the power flow across each **External Interconnection** is (or, as the case may be, is anticipated to be at the time that the instruction is to take effect) either at zero or results in an export of power from the **Total System**,

then **The Company** may instruct such of the **Existing Gas Cooled Reactor Plant** to **De-Synchronise** as it is, in **The Company's** reasonable opinion, necessary to **De-Synchronise** and for the period for which the **De-Synchronising** is, in **The Company's** reasonable opinion, necessary.

- BC2.9.5.2 If in **The Company's** reasonable opinion it is necessary for both the procedure in BC2.9.4 and that set out in BC2.9.5.1 to be followed in any given situation, the procedure in BC2.9.4 will be followed first, and then the procedure set out in BC2.9.5.1. For the avoidance of doubt, nothing in this sub-paragraph shall prevent either procedure from being followed separately and independently of the other.
- BC2.9.6 <u>Emergency Assistance to and from External Systems</u>
 - (a) An Externally Interconnected System Operator (in its role as operator of the External System) may request that The Company takes any available action to increase the Active Energy transferred into its External System, or reduce the Active Energy transferred into the National Electricity Transmission System by way of emergency assistance if the alternative is to instruct a demand reduction on all or part of its External System (or on the system of an Interconnector User using its External System). Such request must be met by The Company providing this does not require a reduction of Demand on the National Electricity Transmission System, or lead to a reduction in security on the National Electricity Transmission System.
 - (b) The Company may request that an Externally Interconnected System Operator takes any available action to increase the Active Energy transferred into the National Electricity Transmission System, or reduce the Active Energy transferred into its External System by way of emergency assistance if the alternative is to instruct a Demand reduction on all or part of the National Electricity Transmission System. Such request must be met by the Externally Interconnected System Operator providing this does not require a reduction of Demand on its External System (or on the system of Interconnector Users using its External System), or lead to a reduction in security on such External System or system.

- BC2.9.7 <u>Unplanned Outages of Electronic Communication and Computing Facilities</u>
- BC2.9.7.1 In the event of an unplanned outage of the electronic data communication facilities or of The Company's associated computing facilities or in the event of a Planned Maintenance Outage lasting longer than the planned duration, in relation to a post-Gate Closure period The Company will, as soon as it is reasonably able to do so, issue a The Company Computing System Failure notification by telephone or such other means agreed between Users and The Company indicating the likely duration of the outage.
- BC2.9.7.2 During the period of any such outage, the following provisions will apply:
 - (a) The Company will issue further The Company Computing System Failure notifications by telephone or such other means agreed between Users and The Company to all BM Participants to provide updates on the likely duration of the outage;
 - (b) (i) BM Participants, not subject to the provisions of BC2.9.7.2(b)(iii), should operate in relation to any period of time in accordance with the last Physical Notification prevailing at Gate Closure received prior to the computer system failure in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.9.7.2. No further submissions of BM Unit Data or Generating Unit Data (other than data specified in BC1.4.2(c) (Export and Import Limits) and BC1.4.2(e) (Dynamic Parameters) should be attempted. Plant failure or similar problems causing significant deviation from Physical Notification should be notified to The Company by telephone by the submission of a revision to Export and Import Limits in relation to the BM Unit or Generating Unit Data so affected;
 - (ii) Interconnector Owners should operate in relation to any period of time in accordance with the last Interconnector Reference Programme based on the last Physical Notifications notified by the Interconnector Users prior to the computer system failure in relation to each such period of time. The Interconnector Owners should continue to act in accordance with last Interconnector Reference Programme. No further submissions of Interconnector Reference Programme should be attempted until the end of the outage is declared.
 - (iii) BM Participants, who are not required to have Control Telephony or System Telephony staffed at all times as provided for in CC7.9 or ECC7.9, should during periods when their telephones are not staffed operate in relation to any period of time in accordance with the last Physical Notification prevailing at Gate Closure received at the prior of the computer system failure in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.9.7.2. If the BM Participants automatic equipment identifies there has been a computer system failure then no further submissions of BM Unit Data or Generating Unit Data (other than data specified in BC1.4.2(c) (Export and Import Limits) and BC1.4.2(e) (Dynamic Parameters) should be attempted. For the avoidance of doubt between 08:00 and 18:00 hours the provisions of BC2.9.7.2(b)(i) shall apply.
 - (c) Revisions to **Export and Import Limits** and to **Dynamic Parameters** should be notified to **The Company** by telephone and will be recorded for subsequent use;
 - (d) **The Company** will issue **Bid-Offer Acceptances** by telephone which will be recorded for subsequent use;
 - (e) No data will be transferred from **The Company** to the **BMRA** until the communication facilities are re-established.

BC2.9.7.3 **The Company** will advise **BM Participants** of the withdrawal of **The Company** Computing System Failure notification following the re-establishment of the communication facilities.

BC2.9.8 Market Suspension

- BC2.9.8.1 Within the **GB Synchronous Area**, the **National Electricity Transmission System** shall be determined to be in an emergency state when operational security analysis indicates one or more of the following situations occurring:
 - a) A situation where there is (or could be) a violation of one or more operational criteria as defined under the **Security and Quality of Supply Standard (SQSS)**; or
 - b) A situation when Unacceptable Frequency Conditions as defined under the **System Security and Quality of Supply Standard (SQSS)** have occurred; or
 - c) At least one measure of the System Defence Plan is activated; or
 - d) There is a failure of the computing facilities used to control and operate the **National Electricity Transmission System** or unplanned outages of Electronic Communication and Computing Facilities as provided for in BC2.9.7 or the loss of communication, computing and data facilities with other **Transmission Licensees** as provided for in STCP 06-4.
- BC2.9.8.2 While the **National Electricity Transmission System** is in an emergency state if, after issuing **National Electricity Transmission System Warnings** and **Emergency Instructions** in accordance with (but not limited to) the requirements under OC7.4 and BC2.9, the situation deteriorates to such an extent that it results in:
 - a) a **Total Shutdown**, **The Company** will suspend the market in accordance with the provisions of OC9.4.6; or
 - b) a **Partial Shutdown**, **The Company** will suspend the market but only where the **Market Suspension Threshold** has been met in accordance with OC9.4.6.

BC2.10 OTHER OPERATIONAL INSTRUCTIONS AND NOTIFICATIONS

- BC2.10.1 **The Company** may, from time to time, need to issue other instructions or notifications associated with the operation of the **National Electricity Transmission System**.
- BC2.10.2 Such instructions or notifications may include:

Intertrips

(a) an instruction to arm or disarm an **Operational Intertripping** scheme;

Tap Positions

(b) a request for a **Genset** step-up transformer tap position (for security assessment):

Tests

(c) an instruction to carry out tests as required under **OC5**, which may include the issue of an instruction regarding the operation of **CCGT Units** within a **CCGT Module** at a **Large Power Station**:

Future BM Unit Requirements

 (d) a reference to any implications for future BM Unit requirements and the security of the National Electricity Transmission System, including arrangements for a change in output to meet post fault security requirements;

Changes to Target Frequency

- (e) a notification of a change in **Target Frequency**, which will normally only be 49.95, 50.00, or 50.05Hz but in exceptional circumstances as determined by **The Company** in its reasonable opinion, may be 49.90 or 50.10Hz.
- BC2.10.3 Where an instruction or notification under BC2.10.2 (c) or (d) results in a change to the input or output level of the **BM Unit** then **The Company** shall issue a **Bid-Offer Acceptance** or **Emergency Instruction** as appropriate.

BC2.11 LIAISON WITH GENERATORS FOR RISK OF TRIP AND AVR TESTING

- BC2.11.1 A Generator at the Control Point for any of its Large Power Stations may request The Company's agreement for one of the Gensets at that Power Station to be operated under a risk of trip. The Company's agreement will be dependent on the risk to the National Electricity Transmission System that a trip of the Genset would constitute.
- BC2.11.2 (a) Each **Generator** at the **Control Point** for any of its **Large Power Stations** will operate its **Synchronised Gensets** (excluding **Power Park Modules**) with:
 - AVRs in constant terminal voltage mode with VAR limiters in service at all times.
 AVR constant Reactive Power or Power Factor mode should, if installed, be disabled; and
 - (ii) its generator step-up transformer tap changer selected to manual mode, unless released from this obligation in respect of a particular **Genset** by **The Company**.
 - (b) Each Generator at the Control Point for any of its Large Power Stations will operate its Power Park Modules with a Completion Date before 1st January 2006 at unity Power Factor at the Grid Entry Point (or User System Entry Point if Embedded).
 - (c) Each Generator at the Control Point for any of its Large Power Stations will operate its Power Park Modules with a Completion Date on or after 1st January 2006 in voltage control mode at the Grid Entry Point (or User System Entry Point if Embedded). Constant Reactive Power or Power Factor mode should, if installed, be disabled.
 - (d) Where a Power System Stabiliser is fitted as part of the excitation system or voltage control system of a Genset, it requires on-load commissioning which must be witnessed by The Company. Only when the performance of the Power System Stabiliser has been approved by The Company, shall it be switched into service by a Generator and then it will be kept in service at all times unless otherwise agreed with The Company. Further reference is made to this in CC.6.3.8 or ECC.6.3.8.
- A Generator at the Control Point for any of its Power Stations may request The Company's agreement for one of its Gensets at that Power Station to be operated with the AVR in manual mode, or Power System Stabiliser switched out, or VAR limiter switched out. The Company's agreement will be dependent on the risk that would be imposed on the National Electricity Transmission System and any User System. Provided that in any event a Generator may take such action as is reasonably necessary on safety grounds (relating to personnel or plant).
- BC2.11.4 Each Generator shall operate its dynamically controlled OTSDUW Plant and Apparatus to ensure that the reactive capability and voltage control performance requirements as specified in CC.6.3.2, CC.6.3.8, CC.A.7 or ECC.6.3.2, ECC.6.3.8, ECC.A.7, ECC.A.8 and the Bilateral Agreement can be satisfied in response to the Setpoint Voltage and Slope as instructed by The Company at the Transmission Interface Point.

BC2.12 LIAISON WITH EXTERNALLY INTERCONNECTED SYSTEM OPERATORS

BC2.12.1 Co-Ordination Role Of Externally Interconnected System Operators

- (a) The Externally Interconnected System Operator will act as the Control Point for Bid-Offer Acceptances on behalf of Interconnector Users and will co-ordinate instructions relating to Ancillary Services and Emergency Instructions on behalf of Interconnector Users using its External System in respect of each Interconnector Users BM Units.
- (b) The Company will issue Bid-Offer Acceptances and instructions for Ancillary Services relating to Interconnector Users BM Units to each Externally Interconnected System Operator in respect of each Interconnector User using its External System.
- (c) If, as a result of a reduction in the capability (in MW) of the External Interconnection, the total of the Physical Notifications and Bid-Offer Acceptances issued for the relevant period using that External Interconnection, as stated in the BM Unit Data, exceeds the reduced capability (in MW) of the respective External Interconnection in that period, then The Company shall notify the Externally Interconnected System Operator accordingly. The Externally Interconnected System Operator should seek a revision of Export and Import Limits from one or more of its Interconnector Users for the remainder of the Balancing Mechanism period during which Physical Notifications cannot be revised.

BC2.13 LIAISON WITH INTERCONNECTOR OWNERS

- (a) Calculate the Interconnector Reference Programme
 - Interconnector Owners shall use best endeavours to deliver updated
 - i) Interconnector Reference Programme to The Company by 10 minutes after each Intraday Cross-Zonal Gate Closure Time.
 - ii) The updated **Interconnector Reference Programme** shall fully reflect the results of the Single Intraday Coupling.
 - Interconnector Owners must ensure that the updated
 - iii) Interconnector Reference Programme is received in its entirety and confirmation that it has been logged into The Company's computer systems by the time of 10 minutes after each Intraday Cross-zonal Gate Closure Time.

APPENDIX 1 - FORM OF BID-OFFER ACCEPTANCES

- BC2.A.1.1 This Appendix describes the forms of **Bid-Offer Acceptances**. As described in BC2.6.1 **Bid-Offer Acceptances** are normally given by an automatic logging device, but in the event of failure of the logging device, **Bid-Offer Acceptances** will be given by telephone.
- BC2.A.1.2 For each **BM Unit** the **Bid-Offer Acceptance** will consist of a series of MW figures and associated times.
- BC2.A.1.3 The Bid-Offer Acceptances relating to CCGT Modules will assume that the CCGT Units within the CCGT Module will operate in accordance with the CCGT Module Matrix, as required by BC1. The Bid-Offer Acceptances relating to Cascade Hydro Schemes will assume that the Generating Unit forming part of the Cascade Hydro Scheme will operate, where submitted, in accordance with the Cascade Hydro Scheme Matrix submitted under BC1. The Bid-Offer Acceptances relating to Synchronous Power Generating Modules will assume that the Synchronous Generating Units within the Synchronous Power Generating Module will operate in accordance with the Synchronous Power Generating Module Matrix, as required by BC1.
- BC2.A.1.4 Bid-Offer Acceptances Given By Automatic Logging Device
 - (a) The complete form of the **Bid-Offer Acceptance** is given in the EDL Message Interface Specification which can be made available to **Users** on request.
 - (b) Bid-Offer Acceptances will normally follow the form:
 - (i) BM Unit Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction
 - (v) BM Unit Bid-Offer Acceptance number
 - (vi) Number of MW/Time points making up instruction (minimum 2, maximum 5)
 - (vii) MW value and Time value for each point identified in (vi)

The times required in the instruction are input and displayed in London time, but communicated electronically in GMT.

BC2.A.1.5 Bid-Offer Acceptances Given By Telephone

- (a) All run-up/run-down rates will be assumed to be constant and consistent with **Dynamic Parameters**. Each **Bid-Offer Acceptance** will, wherever possible, be kept simple, drawing as necessary from the following forms and BC2.7
- (b) **Bid-Offer Acceptances** given by telephone will normally follow the form:
 - (i) an exchange of operator names;
 - (ii) BM Unit Name;
 - (iii) Time of instruction;
 - (iv) Type of instruction;
 - (v) Number of MW/Time points making up instruction (minimum 2, maximum 5)
 - (vi) MW value and Time value for each point identified in (v)

The times required in the instruction are expressed in London time.

For example, for a **BM Unit** ABCD-1 acceptance logged with a start time at 1400 hours and with a FPN at 300MW:

"BM Unit ABCD-1 **Bid-Offer Acceptance** timed at 1400 hours. Acceptance consists of 4 MW/Time points as follows:

300MW at 1400 hours

400MW at 1415 hours

400MW at 1450 hours

300MW at 1500 hours"

BC2.A.1.6 Submission Of Bid-Offer Acceptance Data To The BMRA

The relevant information contained in **Bid-Offer Acceptances** issued by **The Company** will be converted into "from" and "to" MW levels and times before they are submitted to the **BMRA** by **The Company**.

APPENDIX 2 - TYPE AND FORM OF ANCILLARY SERVICE INSTRUCTIONS

BC2.A.2.1 This part of the Appendix consists of a non-exhaustive list of the forms and types of instruction for a **Genset** to provide **System Ancillary Services**. There may be other types of **Commercial Ancillary Services** and these will be covered in the relevant **Ancillary Services Agreement**. In respect of the provision of **Ancillary Services** by **Generating Units** the forms and types of instruction will be in the form of this Appendix 2 unless amended in the **Ancillary Services Agreement**.

As described in CC.8 or ECC.8, **System Ancillary Services** consist of Part 1 and Part 2 **System Ancillary Services**.

Part 1 System Ancillary Services Comprise:

- (a) Reactive Power supplied other than by means of synchronous or static compensators. This is required to ensure that a satisfactory System voltage profile is maintained and that sufficient Reactive Power reserves are maintained under normal and fault conditions. Ancillary Service instructions in relation to Reactive Power may include:
 - (i) MVAr Output
 - (ii) Target Voltage Levels
 - (iii) Tap Changes
 - (iv) Maximum MVAr Output ('maximum excitation')
 - (v) Maximum MVAr Absorption ('minimum excitation')
- (b) Frequency Control by means of Frequency sensitive generation. Gensets may be required to move to or from Frequency Sensitive Mode in the combinations agreed in the relevant Ancillary Services Agreement. They will be specifically requested to operate so as to provide Primary Response and/or Secondary Response and/or High Frequency Response.

Part 2 System Ancillary Services Comprise:

- (c) Frequency Control by means of Fast Start.
- (d) Anchor Plant Capability or Top Up Restoration Capability
- (e) System to Generator Operational Intertripping
- BC2.A.2.2 As **Ancillary Service** instructions are not part of **Bid-Offer Acceptances** they do not need to be closed instructions and can cover any period of time, not just limited to the period of the **Balancing Mechanism**.
- BC2.A.2.3 As described in BC2.6.1, unless otherwise agreed with **The Company**, **Ancillary Service** instructions are normally given by automatic logging device, but in the absence of, or in the event of failure of the logging device, instructions will be given by telephone.
- BC2.A.2.4 <u>Instructions given by Automatic Logging Device</u>
 - (a) The complete form of the **Ancillary Service** instruction is given in the EDL Message Interface Specification which is available to **Users** on request from **The Company**.
 - (b) Ancillary Service instructions for Frequency Control will normally follow the form:
 - (i) **BM Unit** Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction

- (v) Reason Code
- (vi) Start Time
- (c) Ancillary Service instructions for Reactive Power will normally follow the form:
 - (i) BM Unit Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction (MVAr, VOLT or TAPP)
 - (v) Target Value
 - (vi) Target Time

The times required in the instruction are input and displayed in London time, but communicated electronically in GMT.

BC2.A.2.5 <u>Instructions given by Telephone</u>

- (a) Ancillary Service instructions for Frequency Control will normally follow the form:
 - (i) an exchange of operator names;
 - (ii) BM Unit Name;
 - (iii) Time of instruction;
 - (iv) Type of instruction;
 - (v) Start Time.

The times required in the instruction are expressed in London time.

For example, for **BM Unit** ABCD-1 instructed at 1400 hours to provide **Primary** and **High Frequency** response starting at 1415 hours:

***BM Unit** ABCD-1 message timed at 1400 hours. Unit to **Primary and High Frequency Response** at 1415 hours"

- (b) Ancillary Service instructions for Reactive Power will normally follow the form:
 - (a) an exchange of operator names;
 - (b) BM Unit Name;
 - (c) Time of instruction;
 - (d) Type of instruction (MVAr, VOLT, SETPOINT, **SLOPE** or TAPP)
 - (e) Target Value
 - (f) Target Time.

The times required in the instruction are expressed as London time.

For example, for **BM Unit** ABCD-1 instructed at 1400 hours to provide 100MVAr by 1415 hours:

"BM Unit ABCD-1 message timed at 1400 hours. MVAr instruction. Unit to plus 100 MVAr target time 1415 hours."

BC2.A.2.6 Reactive Power

As described in BC2.A.2.4 and BC2.A.2.5 instructions for **Ancillary Services** relating to **Reactive Power** may consist of any of several specific types of instruction. The following table describes these instructions in more detail:

Instruction Name	Description	Type of Instruction
MVAr Output	The individual MVAr output from the Genset onto the National Electricity Transmission System at the Grid Entry Point (or onto the User System at the User System Entry Point in the case of Embedded Power Stations), namely on the higher voltage side of the generator step-up transformer or Grid Entry Point or User System Entry Point in the case of a Power Generating Module. In relation to each Genset, where there is no HV indication, The Company and the Generator will discuss and agree equivalent MVAr levels for the corresponding LV indication. Where a Genset is instructed to a specific MVAr output, the Generator must achieve that output within a tolerance of +/-25 MVAr (for Gensets in England and Wales) or the lesser of +/-5% of rated output or 25MVAr (for Gensets in Scotland) (or such other figure as may be agreed with The Company) by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v), or ECC.6.3.8.3.3 (as applicable) to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both. Once this has been achieved, the Genset terminal voltage without prior consultation with and the agreement of The Company, on the basis that MVAr output will be allowed to vary with System conditions.	MVAr

Instruction Name	Description	Type of Instruction
Target Voltage Levels	Target voltage levels to be achieved by the Genset on the National Electricity Transmission System at the Grid Entry Point (or on the User System at the User System Entry Point in the case of Embedded Power Stations, namely on the higher voltage side of the generator step-up transformer or Grid Entry Point or User System Entry Point in the case of a Power Generating Module. Where a Genset is instructed to a specific target voltage, the Generator must achieve that target within a tolerance of ±1 kV (or such other figure as may be agreed with The Company) by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v) or ECC.6.3.8.3.3 (as applicable), to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both. In relation to each Genset, where there is no HV indication, The Company and the Generator will discuss and agree equivalent voltage levels for the corresponding LV indication. Under normal operating conditions, once this target voltage level has been achieved the Generator will not tap again and will not readjust the Genset terminal voltage without prior consultation with, and with the agreement of, The Company.	VOLT
	However, under certain circumstances, the Generator may be instructed to maintain a target voltage until otherwise instructed and this will be achieved by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v) or ECC.6.3.8.3.3 (as applicable), to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both without reference to The Company .	
Setpoint Voltage	Where a Non-Synchronous Generating Unit, DC Converter or Power Park Module or HVDC Converter is instructed to a specific Setpoint Voltage, the Generator must achieve that Setpoint Voltage within a tolerance of ±0.25% (or such other figure as may be agreed with The Company).	SETPOINT
	The Generator must maintain the specified Setpoint Voltage target until an alternative target is received from The Company .	

Instruction Name	Description	Type of Instruction
Slope	Where a Non-Synchronous Generating Unit, DC Converter or Power Park Module or HVDC Converter is instructed to a specific Slope, the Generator must achieve that Slope within a tolerance of ±0.5% (or such other figure as may be agreed with The Company). The Generator must maintain the specified Slope target until an alternative target is received from The Company. The Generator will not be required to implement a new Slope setting in a time of less than 1 week from the time of the instruction.	SLOPE
Tap Changes	Details of the required generator step-up transformer tap changes in relation to a Genset . The instruction for tap changes may be a Simultaneous Tap Change instruction, whereby the tap change must be effected by the Generator in response to an instruction from The Company issued simultaneously to relevant Power Stations . The instruction, which is normally preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. For a Simultaneous Tap Change , change Genset generator step-up transformer tap position by one [two] taps to raise or lower (as relevant) System voltage, to be executed at time of instruction.	TAPP
Maximum MVAr Output ("maximum excitation")	Under certain conditions, such as low System voltage, an instruction to maximum MVAr output at instructed MW output ("maximum excitation") may be given, and a Generator should take appropriate actions to maximise MVAr output unless constrained by plant operational limits or safety grounds (relating to personnel or plant).	
Maximum MVAr Absorption ("minimum excitation")	Under certain conditions, such as high System voltage, an instruction to maximum MVAr absorption at instructed MW output ("minimum excitation") may be given, and a Generator should take appropriate actions to maximise MVAr absorption unless constrained by plant operational limits or safety grounds (relating to personnel or plant).	

BC2.A.2.7 In addition, the following provisions will apply to **Reactive Power** instructions:

- (a) In circumstances where **The Company** issues new instructions in relation to more than one **BM Unit** at the same **Power Station** at the same time, tapping will be carried out by the **Generator** one tap at a time either alternately between (or in sequential order, if more than two), or at the same time on, each **BM Unit**.
- (b) Where the instructions require more than two taps per **BM Unit** and that means that the instructions cannot be achieved within 2 minutes of the instruction time (or such longer period as **The Company** may have instructed), the instructions must each be achieved with the minimum of delay after the expiry of that period.

- (c) It should be noted that should **System** conditions require, **The Company** may need to instruct maximum MVAr output to be achieved as soon as possible, but (subject to the provisions of paragraph (BC2.A.2.7(b) above) in any event no later than 2 minutes after the instruction is issued.
- (d) An Ancillary Service instruction relating to Reactive Power may be given in respect of CCGT Units within a CCGT Module at a Power Station or Generating Units within a Synchronous Power Generating Module at a Power Station where running arrangements and/or System conditions require, in both cases where exceptional circumstances apply and connection arrangements permit.
- (e) In relation to MVAr matters, MVAr generation/output is an export onto the **System** and is referred to as "lagging MVAr", and MVAr absorption is an import from the **System** and is referred to as "leading MVAr".
- (f) It should be noted that the excitation control system constant Reactive Power output control mode or constant Power Factor output control mode will always be disabled, unless agreed otherwise with The Company.

APPENDIX 3 - SUBMISSION OF REVISED MVAr CAPABILITY

BC2.A.3.1 For the purpose of submitting revised MVAr data the following terms shall apply:

Full Output In the case of a **Synchronous Generating Unit** (as defined in the

Glossary and Definitions ((which could be part of a **Synchronous Power Generating Module**) and not limited by BC2.2) is the MW output measured at the generator stator terminals representing the LV equivalent of the **Registered Capacity** at the **Grid Entry Point**, and in the case of a **Non-Synchronous Generating Unit** (excluding **Power Park Units**), HVDC Converter or DC Converter or **Power Park Module** is the **Registered Capacity** at the **Grid Entry Point**.

Minimum Output In the case of a **Synchronous Generating Unit** (as defined in the

Glossary and Definitions ((which could be part of a Synchronous Power Generating Module) and not limited by BC2.2) is the MW output measured at the generator stator terminals representing the LV equivalent of the Minimum Generation or Minimum Stable Operating Level at the Grid Entry Point, and in the case of a Non-Synchronous Generating Unit (excluding Power Park Units), HVDC Converter or DC Converter or Power Park Module is the Minimum Generation or Minimum Stable Operating Level or Minimum Active Power Transmission Capacity at the Grid Entry Point.

BC2.A.3.2 The following provisions apply to submission of revised MVAr data submitted via the **Designated Information Exchange System**:

- (a) The submission should be submitted to The Company (to the relevant location in accordance with GC6) via the Designated Information Exchange System and must contain all relevant information from Annexure 1 and from either Annexure 2 or 3 (as applicable) but with only the data changes set out. The "notification time" must be completed to refer to the time of submission to the Designated Information Exchange System, where the time is expressed as London time.
- (b) Upon receipt of the submission The Company will acknowledge receipt via the Designated Information Exchange System back to the User. The acknowledgement will either state that the submission has been received and is legible or will state that it (or part of it) is not legible and will request resubmission of the whole (or part) of the submission.
- (c) Upon receipt of the acknowledgement from **The Company** the **User** will, if requested, resubmit the whole or the relevant part of the submission.
- (d) The provisions of paragraphs (b) and (c) then apply to that re-submitted submission.

APPENDIX 3 - ANNEXURE 1

Optional Logo

Company name REVISED REACTIVE POWER CAPABILITY DATA

TO:	National Electricity Transmission System Control Centre	F	ax telephone No.
Numb	er of pages inc. header:		
Sent By	:		
Return A	cknowledgement Fax to		
For Retra	ansmission or Clarification ring		
Acknowl	edged by The Company : (Signatur	e)	
Acknowl	edgement time and date		
	Legibility of FAX :		
	Acceptable		
(List pa	Unacceptable ages if appropriate)		(Resend FAX)

APPENDIX 3 - ANNEXURE 2

National Electricity Transmission System Control Centre To: From: [Company Name & Location] REVISED REACTIVE POWER CAPABILITY DATA - GENERATING UNITS EXCLUDING POWER PARK **MODULES AND DC CONVERTERS** Notification Time (HH:MM): Notification Date (DD/MM/YY): Start Time (HH:MM): Start Date (DD/MM/YY): Generating Unit* * For a Synchronous Power Generating Module and/or CCGT Module and/or a Cascade Hydro Scheme. the redeclaration is for a Generating Unit within a Synchronous Power Generating Module and/or CCGT Module and/or Cascade Hydro Scheme. For BM Units, quote The Company BM Unit id, for other units quote the Generating Unit id used for OC2.4.1.2 Outage Planning submissions. Generating Unit has the meaning given in the Glossary and Definitions and is not limited by BC2.2. REVISION TO THE REACTIVE POWER CAPABILITY AT THE GENERATING UNIT STATOR TERMINALS (at rated terminal volts) AS STATED IN THE RELEVANT ANCILLARY SERVICES AGREEMENT: MW MINIMUM (MVAr +ve MAXIUM (MVAr +ve for lag, -ve for lead) for lag, -ve for lead) AT RATED MW AT FULL OUTPUT (MW) AT MINIMUM **OUTPUT (MW)** COMMENTS e.g. generator transformer tap restrictions, predicted end time if known Redeclaration made by (Signature)

APPENDIX 3 - ANNEXURE 3

To: National Electricity Transmission System Control Centre

From: [Company Name & Location]

REVISED REACTIVE POWER CAPABILITY DATA - POWER PARK MODULES, HVDC CONVERTERS AND DC CONVERTERS

Notification Time (HH:MM):	Notification Date (DD/MM/YY):
Start Time (HH:MM):	Start Date (DD/MM/YY):
Power Park Module / DC Converter*	

^{*} For BM Units quote **The Company BM Unit** id, for other units quote the id used for OC2.4.1.2 Outage Planning submissions

Start Time/Date (if not effective immediately)

REVISION TO THE REACTIVE POWER CAPABILITY AT THE COMMERCIAL BOUNDARY AS STATED IN THE RELEVANT ANCILLARY SERVICES AGREEMENT:

	MINIMUM (MVAr +ve	MAXIMUM (MVAr +ve for
	for lag, -ve for lead)	lag, -ve for lead)
AT RATED MW		
AT 50% OF RATED		
MW		
AT 20% OF RATED MW		
BELOW 20% OF RATED MW		
AT 0% OF RATED		
MW		

COMMENTS e.g. generator transformer tap restrictions, predicted end time if known

Redeclaration made by (Signature)

APPENDIX 4 - SUBMISSION OF AVAILABILITY OF FREQUENCY SENSITIVE MODE

- BC2.A.4.1 For the purpose of submitting availability of **Frequency Sensitive Mode**, this process only relates to the provision of response under the **Frequency Sensitive Mode** and does not cover the provision of response under the **Limited Frequency Sensitive Mode**.
- BC2.A.4.2 The following provisions apply to the submission of the **Frequency Sensitive Mode** availability via the **Designated Information Exchange System:**;
 - (a) The submission should be submitted to **The Company** (to the relevant location in accordance with GC6) via the **Designated Information Exchange System** and must contain all the sections relevant to Appendix 4 Annexure1 but with only the data changes set out. The "notification time" must be completed to refer to the time and date of submission, where the time is expressed in London time.
 - (b) Upon receipt of the submission, **The Company** will acknowledge receipt via the **Designated Information Exchange System**. This acknowledging submission should be in the format of Appendix 4 Annexure 1. The acknowledgement will either state that the submission has been received and is legible or will state that it (or part of it) is not legible and will request resubmission of the whole (or part) of the submission.
 - (c) Upon receipt of the acknowledging submission, the **User** will, if requested re-submit the whole or the relevant part of the submission.
 - (d) The provisions of paragraph (b) and (c) then apply to the resubmitted submission.
- BC2.A.4.3 The **User** shall ensure the availability of operating in **Frequency Sensitive Mode** is restored as soon as reasonably practicable and will notify **The Company** using the format of Appendix 4 Annexure 1. In the event of a sustained unavailability of **Frequency Sensitive Mode**, **The Company** may seek to confirm compliance with the relevant requirements in the **CC** or **ECC** through the process in **OC5** or **ECP**.

APPENDIX 4 - ANNEXURE 1

National Electricity Transmission System Control Centre

To:

From: [Company Name & I	ocation]				
Submission of availability	of Frequency Se	nsitive Mode			
Notification Time (HH:I	ИМ):	Notification Date (DD/MM/YY):			
Start Time (HH:MM):		Start Date (DD/MM/YY):			
Genset or DC Convert	ər				
The availability of the above	unit to operate in	Frequency Sensitive Mode is as	s follows:		
All contract modes: Availa	ble / Unavailable	[delete as applicable]; or			
Change to the availability	of individual con	tract modes:			
Contract Mode e.g. A	ract Mode e.g. A Availability for operation in Frequency Sensitive Mode [Y/N]				
COMMENTS e.g. reason fo	or submission, p	redicted end time if known			
edeclaration made by (Sign	ature)				
eceipt Acknowledgement fro	om The Compan y	<i>'</i>			
Legible (tick box)		Illegible (tick box)			
Explanation:					
Time: Date: Signature:					

< END OF BALANCING CODE 2 >

REVISIONS

(R)

(This section does not form part of the Grid Code)

- R.1 **The ESO Licence** sets out the way in which changes to the Grid Code are to be made and reference is also made to **The Company's** obligations under the General Conditions.
- R.2 All pages re-issued have the revision number on the lower left hand corner of the page and date of the revision on the lower right hand corner of the page.
- R.3 The Grid Code was introduced in March 1990 and the first issue was revised 31 times. In March 2001 the New Electricity Trading Arrangements were introduced and Issue 2 of the Grid Code was introduced which was revised 16 times. At British Electricity Trading and Transmission Arrangements (BETTA) Go-Active Issue 3 of the Grid Code was introduced and subsequently revised 35 times. At Offshore Go-active Issue 4 of the Grid Code was introduced and has been revised 13 times since its original publication. Issue 5 of the Grid Code was published to accommodate the changes made by Grid Code Modification A/10 which has incorporated the **Generator** compliance process into the Grid Code, which was revised 47 times. Issue 6 was published to incorporate all the non-material amendments as a result of modification GC0136.
- R.4 This Revisions section provides a summary of the sections of the Grid Code changed by each revision to Issue 6.
- R.5 All enquiries in relation to revisions to the Grid Code, including revisions to Issues 1, 2, 3, 4 and 5 should be addressed to the Grid Code development team at the following email address:

 Grid.Code@neso.energy

Revision	Section	Related Modification	Effective Date
0	Glossary & Definitions	GC0136	05 March 2021
0	Planning Code	GC0136	05 March 2021
0	Connection Conditions	GC0136	05 March 2021
0	European Connection Conditions	GC0136	05 March 2021
0	Demand Response Services	GC0136	05 March 2021
0	Compliance Processes	GC0136	05 March 2021
0	Europeans Compliance Processes	GC0136	05 March 2021
0	Operating Code 1	GC0136	05 March 2021
0	Operating Code 2	GC0136	05 March 2021
0	Operating Code 5	GC0136	05 March 2021
0	Operating Code 6	GC0136	05 March 2021
0	Operating Code 7	GC0136	05 March 2021
0	Operating Code 8	GC0136	05 March 2021
0	Operating Code 8A	GC0136	05 March 2021
0	Operating Code 8B	GC0136	05 March 2021
0	Operating Code 9	GC0136	05 March 2021
0	Operating Code 11	GC0136	05 March 2021
0	Operating Code 12	GC0136	05 March 2021
0	Balancing Code 2	GC0136	05 March 2021

Revision	Section	Related Modification	Effective Date
0	Balancing Code 3	GC0136	05 March 2021
0	Balancing Code 4	GC0136	05 March 2021
0	Balancing Code 5	GC0136	05 March 2021
0	Data Registration Code	GC0136	05 March 2021
0	General Conditions	GC0136	05 March 2021
0	Governance Rules	GC0136	05 March 2021
1	Glossary & Definitions	GC0130	18 March 2021
1	Operating Code 2	GC0130	18 March 2021
1	Data Registration Code	GC0130	18 March 2021
1	General Conditions	GC0130	18 March 2021
2	Glossary & Definitions	GC0147	17 May 2021
2	Operating Code 6B	GC0147	17 May 2021
2	Operating Code 7	GC0147	17 May 2021
2	Balancing Code 1	GC0147	17 May 2021
2	Balancing Code 2	GC0147	17 May 2021
3	Balancing Code 2	GC0144	26 May 2021
3	Balancing Code 4	GC0144	26 May 2021
4	Preface	GC0149	03 August 2021
4	Glossary & Definitions	GC0149	03 August 2021
4	Planning Code	GC0149	03 August 2021

Revision	Section	Related Modification	Effective Date
4	European Connection Conditions	GC0149	03 August 2021
4	European Compliance Processes	GC0149	03 August 2021
4	Demand Response Services Code	GC0149	03 August 2021
4	Operating Code 2	GC0149	03 August 2021
4	Balancing Code 4	GC0149	03 August 2021
4	Data Registration Code	GC0149	03 August 2021
4	Governance Rules	GC0149	03 August 2021
5	Operating Code 7	GC0109	23 August 2021
6	Connection Conditions	GC0134	01 September 2021
6	European Connection Conditions	GC0134	01 September 2021
6	Balancing Code 2	GC0134	01 September 2021
7	Operating Code 6B	GC0150	04 October 2021
8	Operating Code 2	GC0151	08 November 2021
8	Operating Code 3	GC0151	08 November 2021
8	Operating Code 5	GC0151	08 November 2021
9	Governance Rules	GC0152	29 December 2021
10	General Conditions	Electrical Standards - EDL Instruction Interface Valid Reason Codes	20 January 2022
11	Glossary & Definitions	GC0137	14 February 2022
11	Planning Code	GC0137	14 February 2022

Revision	Section	Related Modification	Effective Date
11	Connection Conditions	GC0137	14 February 2022
11	European Connection Conditions	GC0137	14 February 2022
11	European Compliance Processes	GC0137	14 February 2022
11	Data Registration Code	GC0137	14 February 2022
12	Glossary & Definitions	GC0153	09 March 2022
12	Connection Conditions	GC0153	09 March 2022
12	European Connection Conditions	GC0153	09 March 2022
12	Operating Code 6	GC0153	09 March 2022
12	Operating Code 8A	GC0153	09 March 2022
12	Operating Code 8B	GC0153	09 March 2022
12	Operating Code 12	GC0153	09 March 2022
12	Balancing Code 2	GC0153	09 March 2022
12	Governance Rules	GC0153	09 March 2022
13	Compliance Processes	GC0138	24 June 2022
13	European Compliance Processes	GC0138	24 June 2022
13	Operating Code 5	GC0138	24 June 2022
14	Glossary & Definitions	GC0157	06 October 2022
14	European Connection Conditions	GC0157	06 October 2022
14	Operating Code 2	GC0157	06 October 2022
14	Operating Code 5	GC0157	06 October 2022

Revision	Section	Related Modification	Effective Date
14	Data Registration Code	GC0157	06 October 2022
14	No changes to published Grid Code	GC0158	06 December 2022
15	Glossary & Definitions	GC0160	07 December 2022
15	Balancing Code 1	GC0160	07 December 2022
15	Balancing Code 2	GC0160	07 December 2022
16	Planning Code	GC0141	05 January 2023
16	Connection Conditions	GC0141	05 January 2023
16	European Connection Conditions	GC0141	05 January 2023
16	Compliance Processes	GC0141	05 January 2023
16	European Compliance Processes	GC0141	05 January 2023
17	Connection Conditions	GC0148	4 September 2023
17	European Compliance Processes	GC0148	4 September 2023
17	European Connection Conditions	GC0148	4 September 2023
17	General Conditions	GC0148	4 September 2023
17	Glossary & Definitions	GC0148	4 September 2023
17	Operating Code 5	GC0148	4 September 2023
17	Operating Code 6	GC0148	4 September 2023
17	Planning Code	GC0148	4 September 2023
18	Operating Code 6	GC0161	2 October 2023
19	European Connection Conditions	GC0165	4 December 2023

Revision	Section	Related Modification	Effective Date
19	Operating Code 12	GC0165	4 December 2023
19	Data Registration Code	GC0165	4 December 2023
19	Governance Rules	GC0165	4 December 2023
20	Operating Code 6	GC0162	15 December 2023
21	Glossary & Definitions	GC0156	4 March 2024
21	Planning Code	GC0156	4 March 2024
21	Connection Conditions	GC0156	4 March 2024
21	European Connection Conditions	GC0156	4 March 2024
21	Operating Code 1	GC0156	4 March 2024
21	Operating Code 2	GC0156	4 March 2024
21	Operating Code 5	GC0156	4 March 2024
21	Operating Code 9	GC0156	4 March 2024
21	Balancing Code 2	GC0156	4 March 2024
21	Balancing Code 4	GC0156	4 March 2024
21	Data Registration Code	GC0156	4 March 2024
21	General Conditions	GC0156	4 March 2024
22	Glossary & Definitions	GC0154	2 April 2024
22	Balancing Code 1	GC0154	2 April 2024
22	Balancing Code 2	GC0154	2 April 2024
23	Glossary & Definitions	GC0170	22 April 2024

Revision	Section	Related Modification	Effective Date
23	Planning Code	GC0170	22 April 2024
23	Connection Conditions	GC0170	22 April 2024
23	European Connection Conditions	GC0170	22 April 2024
23	Operating Code 2	GC0170	22 April 2024
23	Operating Code 5	GC0170	22 April 2024
23	Operating Code 9	GC0170	22 April 2024
23	Data Registration Code	GC0170	22 April 2024
23	General Conditions	GC0170	22 April 2024
24	General Conditions	Distribution Restoration Zone Control System Standard	4 June 2024
25	Glossary & Definitions	GC0163	5 July 2024
25	European Connection Conditions	GC0163	5 July 2024
26	Glossary & Definitions	GC0171	5 September 2024
26	Compliance Processes	GC0171	5 September 2024
26	European Compliance Processes	GC0171	5 September 2024
27	Glossary & Definitions	Establishing ISOP in industry codes 2024	1 October 2024
27	Planning Code	Establishing ISOP in industry codes 2024	1 October 2024
27	Connection Conditions	Establishing ISOP in industry codes 2024	1 October 2024
27	European Connection Conditions	Establishing ISOP in industry codes	1 October 2024

Revision	Section	Related Modification	Effective Date
		2024	
27	Demand Response Services	Establishing ISOP in industry codes 2024	1 October 2024
27	Compliance Processes	Establishing ISOP in industry codes 2024	1 October 2024
27	European Compliance Processes	Establishing ISOP in industry codes 2024	1 October 2024
27	Operating Code 2	Establishing ISOP in industry codes 2024	1 October 2024
27	Data Registration Code	Establishing ISOP in industry codes 2024	1 October 2024
27	General Conditions	Establishing ISOP in industry codes 2024	1 October 2024
27	Governance Rules	Establishing ISOP in industry codes 2024	1 October 2024
28	General Conditions	Electrical Standards - EDL Instruction Interface Valid Reason Codes	7 November 2024
29	Glossary & Definitions	GC0175	28 March 2025
29	Connection Conditions	GC0175	28 March 2025
29	European Connection Conditions	GC0175	28 March 2025
29	Operating Code 7	GC0175	28 March 2025
29	Balancing Code 1	GC0175	28 March 2025

Revision	Section	Related Modification	Effective Date
29	Balancing Code 2	GC0175	28 March 2025
29	General Conditions	GC0175	28 March 2025
30	Glossary & Definitions	GC0172	3 April 2025
30	General Conditions	GC0172	3 April 2025
31	Glossary & Definitions	GC0159	8 April 2025
31	Planning Code	GC0159	8 April 2025
31	Operating Code 9	GC0159	8 April 2025
31	General Conditions	Electrical Standards - Electronic Data Transfer (EDT) Interface Specification, Communications Standards, EDL Message Interface Specification, Control Telephony Standard	8 April 2025
32	Connection Conditions	GC0177	19 May 2025
32	European Connection Conditions	GC0177	19 May 2025
32	Compliance Processes	GC0177	19 May 2025
32	European Compliance Processes	GC0177	19 May 2025
33	European Connection Conditions	GC0180	11 June 2025
33	Operating Code 6B	GC0180	11 June 2025
33	Balancing Code 1	GC0180	11 June 2025
33	Balancing Code 2	GC0180	11 June 2025